Considering that real communication signals corrupted by noise are generally nonstationary, and timefrequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributio...Considering that real communication signals corrupted by noise are generally nonstationary, and timefrequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributions are introduced for the modulation classification of communication signals: The extracted time-frequency features have good classification information, and they are insensitive to signal to noise ratio (SNR) variation. According to good classification by the correct rate of a neural network classifier, a multilayer perceptron (MLP) classifier with better generalization, as well as, addition of time-frequency features set for classifying six different modulation types has been proposed. Computer simulations show that the MLP classifier outperforms the decision-theoretic classifier at low SNRs, and the classification experiments for real MPSK signals verify engineering significance of the MLP classifier.展开更多
Recent advances in electronics have increased the complexity of radar signal modulation.The quasi-linear frequency modulation(quasi-LFM)radar waveforms(LFM,Frank code,P1−P4 code)have similar time-frequency distributio...Recent advances in electronics have increased the complexity of radar signal modulation.The quasi-linear frequency modulation(quasi-LFM)radar waveforms(LFM,Frank code,P1−P4 code)have similar time-frequency distributions,and it is difficult to identify such signals using traditional time-frequency analysis methods.To solve this problem,this paper proposes an algorithm for automatic recognition of quasi-LFM radar waveforms based on fractional Fourier transform and time-frequency analysis.First of all,fractional Fourier transform and the Wigner-Ville distribution(WVD)are used to determine the number of main ridgelines and the tilt angle of the target component in WVD.Next,the standard deviation of the target component's width in the signal's WVD is calculated.Finally,an assembled classifier using neural network is built to recognize different waveforms by automatically combining the three features.Simulation results show that the overall recognition rate of the proposed algorithm reaches 94.17%under 0 dB.When the training data set and the test data set are mixed with noise,the recognition rate reaches 89.93%.The best recognition accuracy is achieved when the size of the training set is taken as 400.The algorithm complexity can meet the requirements of real-time recognition.展开更多
The instantaneous frequency (IF) estimation of the linear frequency modulated (LFM) signals with time-varying amplitude using the peak of the Wigner-Ville distribution (WVD) is studied. Theoretical analysis show...The instantaneous frequency (IF) estimation of the linear frequency modulated (LFM) signals with time-varying amplitude using the peak of the Wigner-Ville distribution (WVD) is studied. Theoretical analysis shows that the estimation on LFM signals with time-varying amplitude is unbiased, only if WVD of time-varying amplitude reaches its maximum at frequency zero no matter in which time. The statistical performance in the case of additive white Guassian noise is evaluated and an analytical expression for the variance is provided. The simulations using LFM signals with Gaussian envelope testify that IF can be estimated accurately using the peak of WVD for four models of amplitude variation. Furthermore the statistical result of estimation on the signals with amplitude descending before rising is better than that of the signals with constant amplitude when the amplitude variation rate is moderate.展开更多
文摘Considering that real communication signals corrupted by noise are generally nonstationary, and timefrequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributions are introduced for the modulation classification of communication signals: The extracted time-frequency features have good classification information, and they are insensitive to signal to noise ratio (SNR) variation. According to good classification by the correct rate of a neural network classifier, a multilayer perceptron (MLP) classifier with better generalization, as well as, addition of time-frequency features set for classifying six different modulation types has been proposed. Computer simulations show that the MLP classifier outperforms the decision-theoretic classifier at low SNRs, and the classification experiments for real MPSK signals verify engineering significance of the MLP classifier.
基金This work was supported by the National Natural Science Foundation of China(91538201)the Taishan Scholar Project of Shandong Province(ts201511020)the project supported by Chinese National Key Laboratory of Science and Technology on Information System Security(6142111190404).
文摘Recent advances in electronics have increased the complexity of radar signal modulation.The quasi-linear frequency modulation(quasi-LFM)radar waveforms(LFM,Frank code,P1−P4 code)have similar time-frequency distributions,and it is difficult to identify such signals using traditional time-frequency analysis methods.To solve this problem,this paper proposes an algorithm for automatic recognition of quasi-LFM radar waveforms based on fractional Fourier transform and time-frequency analysis.First of all,fractional Fourier transform and the Wigner-Ville distribution(WVD)are used to determine the number of main ridgelines and the tilt angle of the target component in WVD.Next,the standard deviation of the target component's width in the signal's WVD is calculated.Finally,an assembled classifier using neural network is built to recognize different waveforms by automatically combining the three features.Simulation results show that the overall recognition rate of the proposed algorithm reaches 94.17%under 0 dB.When the training data set and the test data set are mixed with noise,the recognition rate reaches 89.93%.The best recognition accuracy is achieved when the size of the training set is taken as 400.The algorithm complexity can meet the requirements of real-time recognition.
文摘The instantaneous frequency (IF) estimation of the linear frequency modulated (LFM) signals with time-varying amplitude using the peak of the Wigner-Ville distribution (WVD) is studied. Theoretical analysis shows that the estimation on LFM signals with time-varying amplitude is unbiased, only if WVD of time-varying amplitude reaches its maximum at frequency zero no matter in which time. The statistical performance in the case of additive white Guassian noise is evaluated and an analytical expression for the variance is provided. The simulations using LFM signals with Gaussian envelope testify that IF can be estimated accurately using the peak of WVD for four models of amplitude variation. Furthermore the statistical result of estimation on the signals with amplitude descending before rising is better than that of the signals with constant amplitude when the amplitude variation rate is moderate.