This work aims to reveal the mechanical responses and energy evolution characteristics of skarn rock under constant amplitude-varied frequency loading paths.Testing results show that the fatigue lifetime,stress−strain...This work aims to reveal the mechanical responses and energy evolution characteristics of skarn rock under constant amplitude-varied frequency loading paths.Testing results show that the fatigue lifetime,stress−strain responses,deformation,energy dissipation and fracture morphology are all impacted by the loading rate.A pronounced influence of the loading rate on rock deformation is found,with slower loading rate eliciting enhanced strain development,alongside augmented energy absorption and dissipation.In addition,it is revealed that the loading rate and cyclic loading amplitude jointly influence the phase shift distribution,with accelerated rates leading to a narrower phase shift duration.It is suggested that lower loading rate leads to more significant energy dissipation.Finally,the tensile or shear failure modes were intrinsically linked to loading strategy,with cyclic loading predominantly instigating shear damage,as manifest in the increased presence of pulverized grain particles.This work would give new insights into the fortification of mining structures and the optimization of mining methodologies.展开更多
Low sidelobe waveform can reduce mutual masking between targets and increase the detection probability of weak targets.A low sidelobe waveform design method based on complementary amplitude coding(CAC)is proposed in t...Low sidelobe waveform can reduce mutual masking between targets and increase the detection probability of weak targets.A low sidelobe waveform design method based on complementary amplitude coding(CAC)is proposed in this paper,which can be used to reduce the sidelobe level of multiple waveforms.First,the CAC model is constructed.Then,the waveform design problem is transformed into a nonlinear optimization problem by constructing an objective function using the two indicators of peak-to-sidelobe ratio(PSLR)and integrated sidelobe ratio(ISLR).Finally,genetic algorithm(GA)is used to solve the optimization problem to get the best CAC waveforms.Simulations and experiments are conducted to verify the effectiveness of the proposed method.展开更多
Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as...Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as mutual coupling between array elements,array amplitude and phase errors,and array element position errors leads to defects in the array manifold,which makes the performance of the algorithm decline rapidly or even fail.In order to solve the problem of DOA estimation in the presence of amplitude and phase errors and array element position errors,this paper introduces the first-order Taylor expansion equivalent model of the received signal under the uniform linear array from the Bayesian point of view.In the solution,the amplitude and phase error parameters and the array element position error parameters are regarded as random variables obeying the Gaussian distribution.At the same time,the expectation-maximization algorithm is used to update the probability distribution parameters,and then the two error parameters are solved alternately to obtain more accurate DOA estimation results.Finally,the effectiveness of the proposed algorithm is verified by simulation and experiment.展开更多
The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorit...The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorithm.The command input was corrected by weights to generate the desired input for the algorithm,and the feedback was brought into the feedback correction,whose output was the weighted feedback.The weights of the normalized LMS adaptive filtering algorithm were updated on-line according to the estimation error between the desired input and the weighted feedback.Thus,the updated weights were copied to the input correction.The estimation error was forced to zero by the normalized LMS adaptive filtering algorithm such that the weighted feedback was equal to the desired input,making the feedback track the command.The above concept was used as a basis for the development of amplitude phase control.The method has good real-time performance without estimating the system model.The simulation and experiment results show that the proposed amplitude phase control can efficiently cancel the amplitude attenuation and phase delay with high precision.展开更多
To suppress noise amplitude modulation jamming in a single-antenna radar system, a new method based on weighted-matching pursuit (WMP) algorithm is proposed, which can achieve underdetermined blind sources separatio...To suppress noise amplitude modulation jamming in a single-antenna radar system, a new method based on weighted-matching pursuit (WMP) algorithm is proposed, which can achieve underdetermined blind sources separation of the jamming and the target echo from the jammed mixture in the single channel of the receiver. Firstly, the presented method utilizes a prior information about the differences between the jamming component and the radar transmitted signal to construct two signal-adapted sub-dictionaries and to determine the weights. Then the WMP algorithm is applied to remove the jamming component from the mixture. Experimental results verify the validity of the presented method. By comparison of the pulse compression performance, the simulation results shows that the presented method is superior to the method of frequency domain cancellation (FDC) when the jamming-to-signal ratio (JSR) is lower than 15 dB.展开更多
The amplitude of frequency spectrum can he integrated with prohabilisfic data association (PDA) to distinguish the target with clutter echoes, especially in low SNR underwater environment. A new target-tracking algo...The amplitude of frequency spectrum can he integrated with prohabilisfic data association (PDA) to distinguish the target with clutter echoes, especially in low SNR underwater environment. A new target-tracking algorithm is presented which adopts the amplitude of frequency spectrum to improve target tracking in clutter. The prohabilisfic density distribution of frequency spectrum amplitude is analyzed. By simulation, the results show that the algorithm is superior to PDA. This approach enhances stability for the association probability and increases the performance of target tracking.展开更多
Spurious signals in direct digital frequency synthesizers (DDFSs) are partly caused by amplitude quantization and phase truncation, which affect their application to many wireless telecommunication systems. These si...Spurious signals in direct digital frequency synthesizers (DDFSs) are partly caused by amplitude quantization and phase truncation, which affect their application to many wireless telecommunication systems. These signals are deterministic and periodic in the time domain, so they appear as line spectra in the frequency domain. Two types of spurious signals due to amplitude quantization are exactly formulated and compared in the time and frequency domains respectively. Then the frequency spectra and power levels of the spurious signals due to amplitude quantization in the absence of phase-accumulator truncation are emphatically analyzed, and the effects of the DDFS parameter variations on the spurious signals are thoroughly studied by computer simulation. And several important conclusions are derived which can provide theoretical support for parameter choice and spurious performance evaluation in the application of DDFSs.展开更多
Using the constitutive equation of co-rotational derivative type for anisotropic viscoelastic fluid-liquid crystalline(LC),polymer liquids was developed.Two relaxation times are introduced in the equation:λn represen...Using the constitutive equation of co-rotational derivative type for anisotropic viscoelastic fluid-liquid crystalline(LC),polymer liquids was developed.Two relaxation times are introduced in the equation:λn represents relaxation of the normal-symmetric stress components;λs represents relaxation of the shear-unsymmetric stress components.A vibrational rotating flow in gap between cylinders with small amplitudes is studied for the anisotropic viscoelastic fluid-liquid crystalline polymer.The time-dependent constitutive equation are linearized with respect to parameter of small amplitude.For the normal-symmetric part of stress tensor analytical expression of the shear stress is obtained by the constitutive equation.The complex viscosity,complex shear modulus,dynamic and imaginary viscosities,storage modulus and loss modulus are obtained for the normal-symmetric stress case which are defined by the common shear rate.For the shear-unsymmetric stress part,two shear stresses are obtained thus two complex viscosities and two complex shear modulus(i.e.first and second one) are given by the constitutive equation which are defined by rotating shear rate introduced by author.The dynamic and imaginary viscosities,storage modulus and loss modulus are given for each complex viscosities and complex shear modulus.Using the constituive equation the rotating flow with small amplitudes in gap between two coaxial cylinders is studied.展开更多
多输入多输出(MIMO,Multiple-Input Multiple-Output)雷达用多个发射天线同时发射多个独立信号照射目标,并使用多个接收天线接收目标回波信号.本文研究了MIMO雷达中参数估计的稳健性问题.本文应用幅度相位估计(APES,Amplitude and Phase...多输入多输出(MIMO,Multiple-Input Multiple-Output)雷达用多个发射天线同时发射多个独立信号照射目标,并使用多个接收天线接收目标回波信号.本文研究了MIMO雷达中参数估计的稳健性问题.本文应用幅度相位估计(APES,Amplitude and Phase EStimation)技术,利用目标的方位角最大似然估计值,得到了衰落向量的APES估计算法.考虑到方位角估计的不准确性,借鉴稳健的Capon波束形成器的设计思想,本文推导了衰落向量的稳健的APES估计算法.仿真实验表明,衰落向量的APES算法与稳健的APES算法性能十分接近.因此,衰落向量的APES估计算法是稳健的.展开更多
The stability control of surrounding rock for large or super-large section chamber is a difficult technical problem in deep mining condition.Based on the in-site geological conditions of Longgu coal mine,this paper us...The stability control of surrounding rock for large or super-large section chamber is a difficult technical problem in deep mining condition.Based on the in-site geological conditions of Longgu coal mine,this paper used the dynamic module of FLAC3D to study the response characteristics of deep super-large section chamber under dynamic and static combined loading condition.Results showed that under the static loading condition,the maximum vertical stress,deformation and failure range are large,where the stress concentration coefficient is 1.64.The maximum roof-to-floor and two-sides deformations are 54.6 mm and 53.1 mm,respectively.Then,under the dynamic and static combined loading condition:(1)The influence of dynamic load frequency on the two-sides is more obvious;(2)The dynamic load amplitude has the greatest influence on the stress concentration degree,and the plastic failure tends to develop to the deeper;(3)With the dynamic load source distance increase,the response of surrounding rock is gradually attenuated.On this basis,empirical equations for each dynamic load conditions were obtained by using regression analysis method,and all correlation coefficients are greater than 0.99.This research provided reference for the supporting design of deep super-large section chamber under same or similar conditions.展开更多
Recycled waste tires when mixed with soil can play an important role as lightweight materials in retaining walls and embankments, machine foundations and railroad track beds in seismic zones. Having high damping chara...Recycled waste tires when mixed with soil can play an important role as lightweight materials in retaining walls and embankments, machine foundations and railroad track beds in seismic zones. Having high damping characteristic, rubbers can be used as either soil alternative or mixed with soil to reduce vibration when seismic loads are of great concern. Therefore, the objective of this work was to evaluate the dynamic properties of such mixtures prior to practical applications. To this reason, torsional resonant column and dynamic triaxial experiments were carried out and the effect of the important parameters like rubber content and ratio of mean grain size of rubber solids versus soil solids(D50,r/D50,s) on dynamic response of mixtures in a range of low to high shearing strain amplitude from about 4×10-4% to 2.7% were investigated. Considering engineering applications, specimens were prepared almost at the maximum dry density and optimum moisture content to model a mixture layer above the ground water table and in low precipitation region. The results show that tire inclusion significantly reduces the shear modulus and increases the damping ratio of the mixtures. Also decrease in D50,r/D50,s causes the mixture to exhibit more rubber-like behavior. Finally, normalized shear modulus versus shearing strain amplitude curve was proposed for engineering practice.展开更多
Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) met...Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) methods suffer from high computational complexity and limited usage in the presence of MRFT jamming.In order to solve the above problems, an efficient and adaptable probability hypothesis density(PHD) filter is proposed. Based on the gating strategy, the obtained measurements are firstly classified into the generalized newborn target and the existing target measurements. The two categories of measurements are independently used in the decomposed form of the PHD filter. Meanwhile,an amplitude feature is used to suppress the dense clutter. In addition, an MRFT jamming suppression algorithm is introduced to the filter. Target amplitude information and phase quantization information are jointly used to deal with MRFT jamming and the clutter by modifying the particle weights of the generalized newborn targets. Simulations demonstrate the proposed algorithm can obtain superior correct discrimination rate of MRFT, and high-accuracy tracking performance with high computational efficiency in the presence of MRFT jamming in the dense clutter.展开更多
This study aims to predict ground surface settlement due to shallow tunneling and introduce the most affecting parameters on this phenomenon.Based on data collected from Shanghai LRT Line 2 project undertaken by TBM-E...This study aims to predict ground surface settlement due to shallow tunneling and introduce the most affecting parameters on this phenomenon.Based on data collected from Shanghai LRT Line 2 project undertaken by TBM-EPB method,this research has considered the tunnel's geometric,strength,and operational factors as the dependent variables.At first,multiple regression(MR) method was used to propose equations based on various parameters.The results indicated the dependency of surface settlement on many parameters so that the interactions among different parameters make it impossible to use MR method as it leads to equations of poor accuracy.As such,adaptive neuro-fuzzy inference system(ANFIS),was used to evaluate its capabilities in terms of predicting surface settlement.Among generated ANFIS models,the model with all input parameters considered produced the best prediction,so as its associated R^2 in the test phase was obtained to be 0.957.The equations and models in which operational factors were taken into consideration gave better prediction results indicating larger relative effect of such factors.For sensitivity analysis of ANFIS model,cosine amplitude method(CAM) was employed; among other dependent variables,fill factor of grouting(n) and grouting pressure(P) were identified as the most affecting parameters.展开更多
Perceptual auditory filter banks such as Bark-scale filter bank are widely used as front-end processing in speech recognition systems.However,the problem of the design of optimized filter banks that provide higher acc...Perceptual auditory filter banks such as Bark-scale filter bank are widely used as front-end processing in speech recognition systems.However,the problem of the design of optimized filter banks that provide higher accuracy in recognition tasks is still open.Owing to spectral analysis in feature extraction,an adaptive bands filter bank (ABFB) is presented.The design adopts flexible bandwidths and center frequencies for the frequency responses of the filters and utilizes genetic algorithm (GA) to optimize the design parameters.The optimization process is realized by combining the front-end filter bank with the back-end recognition network in the performance evaluation loop.The deployment of ABFB together with zero-crossing peak amplitude (ZCPA) feature as a front process for radial basis function (RBF) system shows significant improvement in robustness compared with the Bark-scale filter bank.In ABFB,several sub-bands are still more concentrated toward lower frequency but their exact locations are determined by the performance rather than the perceptual criteria.For the ease of optimization,only symmetrical bands are considered here,which still provide satisfactory results.展开更多
A novel identification method for point source,coherently distributed(CD) source and incoherently distributed(ICD) source is proposed.The differences among the point source,CD source and ICD source are studied.Acc...A novel identification method for point source,coherently distributed(CD) source and incoherently distributed(ICD) source is proposed.The differences among the point source,CD source and ICD source are studied.According to the different characters of covariance matrix and general steering vector of the array received source,a second order blind identification method is used to separate the sources,the mixing matrix could be obtained.From the mixing matrix,the type of the source is identified by using an amplitude criterion.And the direction of arrival for the array received source is estimated by using the matching pursuit algorithm from the vectors of the mixing matrix.Computer simulations validate the efficiency of the method.展开更多
This paper investigates the problem of synchronization for offset quadrature amplitude modulation based orthogonal frequency division multiplexing(OFDM/OQAM) systems based on the genetic algorithm. In order to increas...This paper investigates the problem of synchronization for offset quadrature amplitude modulation based orthogonal frequency division multiplexing(OFDM/OQAM) systems based on the genetic algorithm. In order to increase the spectrum efficiency,an improved preamble structure without guard symbols is derived at first. On this basis, instead of deriving the log likelihood function of power spectral density, joint estimation of the symbol timing offset and carrier frequency offset based on the preamble proposed is formulated into a bivariate optimization problem. After that, an improved genetic algorithm is used to find its global optimum solution. Conclusions can be drawn from simulation results that the proposed method has advantages in the joint estimation of synchronization.展开更多
Space-time adaptive processing(STAP) has been proven to be one of the best techniques capable of detecting weak moving targets in strong clutter environment and has been widely applied in airborne ground moving targ...Space-time adaptive processing(STAP) has been proven to be one of the best techniques capable of detecting weak moving targets in strong clutter environment and has been widely applied in airborne ground moving target indication(GMTI) radar.This paper applies an amplitude and phase estimation(APES) approach to two aspects of the STAP algorithm.Firstly,APES is applied to accurately describe the clutter characteristic in angle-Doppler domain.Then,APES is incorporated into the standard STAP algorithm to improve its performance without increasing transmitting/receiving channel and pulse number.The experimental examples show that the detection performance can be improved by using the APES technique,as well as the high computational complexity can be avoided.展开更多
The present work deals with an investigation of the self-starting aerodynamic characteristics of VAWT under fluctuating wind. In contrast to the previous studies, the rotational speed of the turbine is not fixed, the ...The present work deals with an investigation of the self-starting aerodynamic characteristics of VAWT under fluctuating wind. In contrast to the previous studies, the rotational speed of the turbine is not fixed, the rotation of the turbine is determined by the dynamic interaction between the fluctuating wind and turbine. A weak coupling method is developed to simulate the dynamic interaction between the fluctuating wind and passive rotation turbine, and the results show that if the fluctuating wind with appropriate fluctuation amplitude and frequency, the self-starting aerodynamic characteristics of VAWT will be enhanced. It is also found that compared with the fluctuation amplitude, the fluctuation frequency of the variation in wind velocity is shown to have a minor effect on the performance of the turbine. The analysis will provide straightforward physical insight into the self-starting aerodynamic characteristics of VAWT under fluctuating wind.展开更多
基金Project(52174069) supported by the National Natural Science Foundation of ChinaProject(8202033) supported by the Beijing Natural Science Foundation,ChinaProject(KCF2203) supported by the Henan Key Laboratory for Green and Efficient Mining&Comprehensive Utilization of Mineral Resources (Henan Polytechnic University),China。
文摘This work aims to reveal the mechanical responses and energy evolution characteristics of skarn rock under constant amplitude-varied frequency loading paths.Testing results show that the fatigue lifetime,stress−strain responses,deformation,energy dissipation and fracture morphology are all impacted by the loading rate.A pronounced influence of the loading rate on rock deformation is found,with slower loading rate eliciting enhanced strain development,alongside augmented energy absorption and dissipation.In addition,it is revealed that the loading rate and cyclic loading amplitude jointly influence the phase shift distribution,with accelerated rates leading to a narrower phase shift duration.It is suggested that lower loading rate leads to more significant energy dissipation.Finally,the tensile or shear failure modes were intrinsically linked to loading strategy,with cyclic loading predominantly instigating shear damage,as manifest in the increased presence of pulverized grain particles.This work would give new insights into the fortification of mining structures and the optimization of mining methodologies.
基金supported by the National Natural Science Foundation of China(62001481,61890542)the Natural Science Foundation of Hunan Province(2021JJ40686).
文摘Low sidelobe waveform can reduce mutual masking between targets and increase the detection probability of weak targets.A low sidelobe waveform design method based on complementary amplitude coding(CAC)is proposed in this paper,which can be used to reduce the sidelobe level of multiple waveforms.First,the CAC model is constructed.Then,the waveform design problem is transformed into a nonlinear optimization problem by constructing an objective function using the two indicators of peak-to-sidelobe ratio(PSLR)and integrated sidelobe ratio(ISLR).Finally,genetic algorithm(GA)is used to solve the optimization problem to get the best CAC waveforms.Simulations and experiments are conducted to verify the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (62071144)
文摘Most of the existing direction of arrival(DOA)estimation algorithms are applied under the assumption that the array manifold is ideal.In practical engineering applications,the existence of non-ideal conditions such as mutual coupling between array elements,array amplitude and phase errors,and array element position errors leads to defects in the array manifold,which makes the performance of the algorithm decline rapidly or even fail.In order to solve the problem of DOA estimation in the presence of amplitude and phase errors and array element position errors,this paper introduces the first-order Taylor expansion equivalent model of the received signal under the uniform linear array from the Bayesian point of view.In the solution,the amplitude and phase error parameters and the array element position error parameters are regarded as random variables obeying the Gaussian distribution.At the same time,the expectation-maximization algorithm is used to update the probability distribution parameters,and then the two error parameters are solved alternately to obtain more accurate DOA estimation results.Finally,the effectiveness of the proposed algorithm is verified by simulation and experiment.
基金Project(50905037) supported by the National Natural Science Foundation of ChinaProject(20092304120014) supported by Specialized Research Fund for the Doctoral Program of Higher Education of China+2 种基金 Project(20100471021) supported by the China Postdoctoral Science Foundation Project(LBH-Q09134) supported by Heilongjiang Postdoctoral Science-Research Foundation,China Project (HEUFT09013) supported by the Foundation of Harbin Engineering University,China
文摘The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorithm.The command input was corrected by weights to generate the desired input for the algorithm,and the feedback was brought into the feedback correction,whose output was the weighted feedback.The weights of the normalized LMS adaptive filtering algorithm were updated on-line according to the estimation error between the desired input and the weighted feedback.Thus,the updated weights were copied to the input correction.The estimation error was forced to zero by the normalized LMS adaptive filtering algorithm such that the weighted feedback was equal to the desired input,making the feedback track the command.The above concept was used as a basis for the development of amplitude phase control.The method has good real-time performance without estimating the system model.The simulation and experiment results show that the proposed amplitude phase control can efficiently cancel the amplitude attenuation and phase delay with high precision.
文摘To suppress noise amplitude modulation jamming in a single-antenna radar system, a new method based on weighted-matching pursuit (WMP) algorithm is proposed, which can achieve underdetermined blind sources separation of the jamming and the target echo from the jammed mixture in the single channel of the receiver. Firstly, the presented method utilizes a prior information about the differences between the jamming component and the radar transmitted signal to construct two signal-adapted sub-dictionaries and to determine the weights. Then the WMP algorithm is applied to remove the jamming component from the mixture. Experimental results verify the validity of the presented method. By comparison of the pulse compression performance, the simulation results shows that the presented method is superior to the method of frequency domain cancellation (FDC) when the jamming-to-signal ratio (JSR) is lower than 15 dB.
基金This project was supported by the Defense Pre-Research Project of the‘Tenth Five-Year-Plan’of China (40105010101)
文摘The amplitude of frequency spectrum can he integrated with prohabilisfic data association (PDA) to distinguish the target with clutter echoes, especially in low SNR underwater environment. A new target-tracking algorithm is presented which adopts the amplitude of frequency spectrum to improve target tracking in clutter. The prohabilisfic density distribution of frequency spectrum amplitude is analyzed. By simulation, the results show that the algorithm is superior to PDA. This approach enhances stability for the association probability and increases the performance of target tracking.
基金supported by the National Grand Fundamental Research 973 Program of China(2004CB318109)the National High Technology Research and Development Program of China(863 Program)(2006AA01Z452).
文摘Spurious signals in direct digital frequency synthesizers (DDFSs) are partly caused by amplitude quantization and phase truncation, which affect their application to many wireless telecommunication systems. These signals are deterministic and periodic in the time domain, so they appear as line spectra in the frequency domain. Two types of spurious signals due to amplitude quantization are exactly formulated and compared in the time and frequency domains respectively. Then the frequency spectra and power levels of the spurious signals due to amplitude quantization in the absence of phase-accumulator truncation are emphatically analyzed, and the effects of the DDFS parameter variations on the spurious signals are thoroughly studied by computer simulation. And several important conclusions are derived which can provide theoretical support for parameter choice and spurious performance evaluation in the application of DDFSs.
基金Project(10772177) supported by the National Natural Science Foundation of China
文摘Using the constitutive equation of co-rotational derivative type for anisotropic viscoelastic fluid-liquid crystalline(LC),polymer liquids was developed.Two relaxation times are introduced in the equation:λn represents relaxation of the normal-symmetric stress components;λs represents relaxation of the shear-unsymmetric stress components.A vibrational rotating flow in gap between cylinders with small amplitudes is studied for the anisotropic viscoelastic fluid-liquid crystalline polymer.The time-dependent constitutive equation are linearized with respect to parameter of small amplitude.For the normal-symmetric part of stress tensor analytical expression of the shear stress is obtained by the constitutive equation.The complex viscosity,complex shear modulus,dynamic and imaginary viscosities,storage modulus and loss modulus are obtained for the normal-symmetric stress case which are defined by the common shear rate.For the shear-unsymmetric stress part,two shear stresses are obtained thus two complex viscosities and two complex shear modulus(i.e.first and second one) are given by the constitutive equation which are defined by rotating shear rate introduced by author.The dynamic and imaginary viscosities,storage modulus and loss modulus are given for each complex viscosities and complex shear modulus.Using the constituive equation the rotating flow with small amplitudes in gap between two coaxial cylinders is studied.
文摘多输入多输出(MIMO,Multiple-Input Multiple-Output)雷达用多个发射天线同时发射多个独立信号照射目标,并使用多个接收天线接收目标回波信号.本文研究了MIMO雷达中参数估计的稳健性问题.本文应用幅度相位估计(APES,Amplitude and Phase EStimation)技术,利用目标的方位角最大似然估计值,得到了衰落向量的APES估计算法.考虑到方位角估计的不准确性,借鉴稳健的Capon波束形成器的设计思想,本文推导了衰落向量的稳健的APES估计算法.仿真实验表明,衰落向量的APES算法与稳健的APES算法性能十分接近.因此,衰落向量的APES估计算法是稳健的.
基金Project(2018YFC0604703)supported by the National Key R&D Program of ChinaProjects(51804181,51874190)supported by the National Natural Science Foundation of China+3 种基金Project(ZR2018QEE002)supported by the Shandong Province Natural Science Fund,ChinaProject(ZR2018ZA0603)supported by the Major Program of Shandong Province Natural Science Foundation,ChinaProject(2019GSF116003)supported by the Key R&D Project of Shandong Province,ChinaProject(SDKDYC190234)supported by the Shandong University of Science and Technology,Graduate Student Technology Innovation Project,China。
文摘The stability control of surrounding rock for large or super-large section chamber is a difficult technical problem in deep mining condition.Based on the in-site geological conditions of Longgu coal mine,this paper used the dynamic module of FLAC3D to study the response characteristics of deep super-large section chamber under dynamic and static combined loading condition.Results showed that under the static loading condition,the maximum vertical stress,deformation and failure range are large,where the stress concentration coefficient is 1.64.The maximum roof-to-floor and two-sides deformations are 54.6 mm and 53.1 mm,respectively.Then,under the dynamic and static combined loading condition:(1)The influence of dynamic load frequency on the two-sides is more obvious;(2)The dynamic load amplitude has the greatest influence on the stress concentration degree,and the plastic failure tends to develop to the deeper;(3)With the dynamic load source distance increase,the response of surrounding rock is gradually attenuated.On this basis,empirical equations for each dynamic load conditions were obtained by using regression analysis method,and all correlation coefficients are greater than 0.99.This research provided reference for the supporting design of deep super-large section chamber under same or similar conditions.
文摘Recycled waste tires when mixed with soil can play an important role as lightweight materials in retaining walls and embankments, machine foundations and railroad track beds in seismic zones. Having high damping characteristic, rubbers can be used as either soil alternative or mixed with soil to reduce vibration when seismic loads are of great concern. Therefore, the objective of this work was to evaluate the dynamic properties of such mixtures prior to practical applications. To this reason, torsional resonant column and dynamic triaxial experiments were carried out and the effect of the important parameters like rubber content and ratio of mean grain size of rubber solids versus soil solids(D50,r/D50,s) on dynamic response of mixtures in a range of low to high shearing strain amplitude from about 4×10-4% to 2.7% were investigated. Considering engineering applications, specimens were prepared almost at the maximum dry density and optimum moisture content to model a mixture layer above the ground water table and in low precipitation region. The results show that tire inclusion significantly reduces the shear modulus and increases the damping ratio of the mixtures. Also decrease in D50,r/D50,s causes the mixture to exhibit more rubber-like behavior. Finally, normalized shear modulus versus shearing strain amplitude curve was proposed for engineering practice.
基金supported by the National Natural Science Foundation of China (11472214)。
文摘Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) methods suffer from high computational complexity and limited usage in the presence of MRFT jamming.In order to solve the above problems, an efficient and adaptable probability hypothesis density(PHD) filter is proposed. Based on the gating strategy, the obtained measurements are firstly classified into the generalized newborn target and the existing target measurements. The two categories of measurements are independently used in the decomposed form of the PHD filter. Meanwhile,an amplitude feature is used to suppress the dense clutter. In addition, an MRFT jamming suppression algorithm is introduced to the filter. Target amplitude information and phase quantization information are jointly used to deal with MRFT jamming and the clutter by modifying the particle weights of the generalized newborn targets. Simulations demonstrate the proposed algorithm can obtain superior correct discrimination rate of MRFT, and high-accuracy tracking performance with high computational efficiency in the presence of MRFT jamming in the dense clutter.
文摘This study aims to predict ground surface settlement due to shallow tunneling and introduce the most affecting parameters on this phenomenon.Based on data collected from Shanghai LRT Line 2 project undertaken by TBM-EPB method,this research has considered the tunnel's geometric,strength,and operational factors as the dependent variables.At first,multiple regression(MR) method was used to propose equations based on various parameters.The results indicated the dependency of surface settlement on many parameters so that the interactions among different parameters make it impossible to use MR method as it leads to equations of poor accuracy.As such,adaptive neuro-fuzzy inference system(ANFIS),was used to evaluate its capabilities in terms of predicting surface settlement.Among generated ANFIS models,the model with all input parameters considered produced the best prediction,so as its associated R^2 in the test phase was obtained to be 0.957.The equations and models in which operational factors were taken into consideration gave better prediction results indicating larger relative effect of such factors.For sensitivity analysis of ANFIS model,cosine amplitude method(CAM) was employed; among other dependent variables,fill factor of grouting(n) and grouting pressure(P) were identified as the most affecting parameters.
基金Project(61072087) supported by the National Natural Science Foundation of ChinaProject(20093048) supported by Shanxi ProvincialGraduate Innovation Fund of China
文摘Perceptual auditory filter banks such as Bark-scale filter bank are widely used as front-end processing in speech recognition systems.However,the problem of the design of optimized filter banks that provide higher accuracy in recognition tasks is still open.Owing to spectral analysis in feature extraction,an adaptive bands filter bank (ABFB) is presented.The design adopts flexible bandwidths and center frequencies for the frequency responses of the filters and utilizes genetic algorithm (GA) to optimize the design parameters.The optimization process is realized by combining the front-end filter bank with the back-end recognition network in the performance evaluation loop.The deployment of ABFB together with zero-crossing peak amplitude (ZCPA) feature as a front process for radial basis function (RBF) system shows significant improvement in robustness compared with the Bark-scale filter bank.In ABFB,several sub-bands are still more concentrated toward lower frequency but their exact locations are determined by the performance rather than the perceptual criteria.For the ease of optimization,only symmetrical bands are considered here,which still provide satisfactory results.
文摘A novel identification method for point source,coherently distributed(CD) source and incoherently distributed(ICD) source is proposed.The differences among the point source,CD source and ICD source are studied.According to the different characters of covariance matrix and general steering vector of the array received source,a second order blind identification method is used to separate the sources,the mixing matrix could be obtained.From the mixing matrix,the type of the source is identified by using an amplitude criterion.And the direction of arrival for the array received source is estimated by using the matching pursuit algorithm from the vectors of the mixing matrix.Computer simulations validate the efficiency of the method.
基金supported by the National Natural Science Foundation of China(61671468)。
文摘This paper investigates the problem of synchronization for offset quadrature amplitude modulation based orthogonal frequency division multiplexing(OFDM/OQAM) systems based on the genetic algorithm. In order to increase the spectrum efficiency,an improved preamble structure without guard symbols is derived at first. On this basis, instead of deriving the log likelihood function of power spectral density, joint estimation of the symbol timing offset and carrier frequency offset based on the preamble proposed is formulated into a bivariate optimization problem. After that, an improved genetic algorithm is used to find its global optimum solution. Conclusions can be drawn from simulation results that the proposed method has advantages in the joint estimation of synchronization.
文摘Space-time adaptive processing(STAP) has been proven to be one of the best techniques capable of detecting weak moving targets in strong clutter environment and has been widely applied in airborne ground moving target indication(GMTI) radar.This paper applies an amplitude and phase estimation(APES) approach to two aspects of the STAP algorithm.Firstly,APES is applied to accurately describe the clutter characteristic in angle-Doppler domain.Then,APES is incorporated into the standard STAP algorithm to improve its performance without increasing transmitting/receiving channel and pulse number.The experimental examples show that the detection performance can be improved by using the APES technique,as well as the high computational complexity can be avoided.
基金Projects(61105086,51505347)supported by the National Natural Science Foundation of China
文摘The present work deals with an investigation of the self-starting aerodynamic characteristics of VAWT under fluctuating wind. In contrast to the previous studies, the rotational speed of the turbine is not fixed, the rotation of the turbine is determined by the dynamic interaction between the fluctuating wind and turbine. A weak coupling method is developed to simulate the dynamic interaction between the fluctuating wind and passive rotation turbine, and the results show that if the fluctuating wind with appropriate fluctuation amplitude and frequency, the self-starting aerodynamic characteristics of VAWT will be enhanced. It is also found that compared with the fluctuation amplitude, the fluctuation frequency of the variation in wind velocity is shown to have a minor effect on the performance of the turbine. The analysis will provide straightforward physical insight into the self-starting aerodynamic characteristics of VAWT under fluctuating wind.