期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Explosion characteristics of aluminum-based activated fuels containing fluorine 被引量:3
1
作者 Jin-tao Xu Lei Huang +4 位作者 Hai-peng Jiang Tian-jiao Zhang Feng-qi Zhao Jian-kan Zhang Wei Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期34-43,共10页
Measuring the dust explosion characteristics of aluminum-based activated fuels was a prerequisite for developing effective prevention and control measures.In this paper,ignition sensitivity,flame propagation behaviors... Measuring the dust explosion characteristics of aluminum-based activated fuels was a prerequisite for developing effective prevention and control measures.In this paper,ignition sensitivity,flame propagation behaviors and explosion severity of aluminum/polytetrafluoroethylene(Al/PTFE)compositions including 2 PT(2.80 wt.%F),4 PT(7.18 wt.%F)and 8 PT(11.90 wt.%F)were studied.When the content of F increased from 2.80 wt.%to 11.90 wt.%,the minimum explosive concentration MEC decreased from380 g/m^(3)to 140 g/m^(3),due to the dual effects of increased internal active aluminum and enhanced reactivity.The average flame propagation velocities increased as the percentage of F increased.The maximum explosion pressure Pmof 500 g/m3aluminum-based activated fuels increased from 247 k Pa to299 kPa.Scanning electron microscopy demonstrated that with the increase of PTFE content,the reaction was more complete.On this basis,the explosion mechanism of aluminum-based activated fuels was revealed. 展开更多
关键词 aluminum-based activated fuels Ignition sensitivity Flame propagation Explosion severity Explosion mechanism
在线阅读 下载PDF
Novel aluminum-based fuel:Facile preparation to improve thermal reactions 被引量:3
2
作者 Fa-yang Guan Hui Ren +2 位作者 Wan-jun Zhao Xin-zhou Wu Qing-jie Jiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第10期1852-1862,共11页
To improve the thermal properties of aluminum(Al)in the energetic system,a coated structure with ammonium perchlorate(AP)was prepared by a facile approach.And N,N-Dimethylformamide(DMF)was chosen as an ideal solvent b... To improve the thermal properties of aluminum(Al)in the energetic system,a coated structure with ammonium perchlorate(AP)was prepared by a facile approach.And N,N-Dimethylformamide(DMF)was chosen as an ideal solvent based on heterogeneous nucleation theory and molecular dynamics simulation.This coated structure could enlarge the contact area and improve the reaction environment to enhance the thermal properties.The addition of AP could accelerate oxidation temperature of Al with around 17.5°C.And the heat release of 85@15 composition rises to 26.13 k J/g and the reaction degree is97.6%with higher peak pressure(254.6 k Pa)and rise rate(1.397 MPa/s).An ideal ratio with 15 wt%AP was probed primarily.The high energy laser-induced shockwave experiment was utilized to simulate the reaction behavior in hot field.And the larger activated mixture of coated powder could release more energy to promote the growth of shockwave with higher speed up to 518.7±55.9 m/s.In conclusion,85@15 composition is expected to be applied in energetic system as a novel metal fuel. 展开更多
关键词 aluminum-based fuel Heterogeneous nucleation Molecular dynamics simulation Thermal reaction High energy laser-induced shockwave experiment
在线阅读 下载PDF
Microstructure and properties of electronic packaging shell with high silicon carbide aluminum-base composites by semi-solid thixoforming
3
作者 郭明海 刘俊友 +2 位作者 贾成厂 贾琪瑾 果世驹 《Journal of Central South University》 SCIE EI CAS 2014年第11期4053-4058,共6页
The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of... The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of different parts of the shell were observed by scanning electron microscopy and optical microscopy, and the thermophysical and mechanical properties of the shell were tested. The results show that there exists the segregation phenomenon between the Si C particulate and the liquid phase during thixoforming, the liquid phase flows from the shell, and the Si C particles accumulate at the bottom of the shell. The volume fraction of Si C decreases gradually from the bottom to the walls. Accordingly, the thermal conductivities of bottom center and walls are 178 and 164 W·m-1·K-1, the coefficients of thermal expansion(CTE) are 8.2×10-6 and 12.6×10-6 K-1, respectively. The flexural strength decreases slightly from 437 to 347 MPa. The microstructures and properties of the shell show gradient distribution. 展开更多
关键词 high silicon carbide aluminum-base composites electronic packaging semi-solid thixoforming thermal conductivity coefficient of thermal expansion
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部