Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
It is well known that the magnetic properties such as the Curie temperature Tmag <sub>C and the mean magnetic moment β of ordered compounds have different values from those of the disordered solutions. For inst...It is well known that the magnetic properties such as the Curie temperature Tmag <sub>C and the mean magnetic moment β of ordered compounds have different values from those of the disordered solutions. For instance, both Tmag c and β of the Ni3Pt (L12) and NiPt (L10) and Tmag <sub>c of the CoPt (L10) and CoPt3 (L12) ordered compounds are strongly depressed due to the ordering compared with those of the metastable disordered Ni-Pt and Co-Pt alloys. On the other hand, the γ’-FeNi3 (L12) and the α’-FeCo (B2) ordered compounds have higher Tmag <sub>c and β values comparing with the disordered solution phases, γ (A1) and α (A2), respectively. In consequence, the stability of the ordered phase is depressed or enhanced due to the interaction between the chemical and magnetic ordering caused by the decrease or increase of Tmag <sub>c and β values. The purpose of this study is to investigate the effect of the interaction between the chemical and the magnetic ordering on the phase equilibria in the Fe-X(X=Al, Co, Ni, Rh, Si) binary systems.The Gibbs energy of the α(A2), γ(A1) and liquid phases is described by a sub-regular solution approximation. The ordering contribution to the Gibbs energy ,ΔGorder <sub>m, and deviations of magnetic properties, ΔTmag <sub>c and Δβ, of the ordered compounds, FeAl (B2), Fe3Al (D03), FeCo (B2), FeRh (B2), FeSi (B2), Fe3Si (D03) and FeNi3 (L12) is introduced by the split compound energy formalism. Effect of the interaction between the chemical ordering, B2, D03 and L12 and the magnetic ordering on the phase equilibria will be discussed according to the calculated phase diagrams of the Fe-X binary systems.展开更多
The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy...The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy 7050 were investigated by hot uniaxial compression tests in order to obtain the material parameters used in the CA model. The influences of process parameters(strain, strain rate and temperature) on the fraction of DRX and the average recrystallization grain(R-grain) size were investigated and discussed. It is found that larger stain, higher temperature and lower strain rate(less than 0.1 s^(–1)) are beneficial to the increasing fraction of DRX. And the deformation temperature affects the mean R-grain size much more greatly than other parameters. It is also noted that there is a critical strain for the occurrence of DRX which is related to strain rate and temperature. In addition, it is shown that the CA model with topology deformation is able to simulate the microstructural evolution and the flow behavior of aluminium alloy 7050 material under various deformation conditions.展开更多
Necking defects have long troubled the application of cross-wedge rolling technology in aluminium alloy shaft parts.To accurately predict necking defects,new judgement conditions are established based on the thermal p...Necking defects have long troubled the application of cross-wedge rolling technology in aluminium alloy shaft parts.To accurately predict necking defects,new judgement conditions are established based on the thermal performance of 6082 aluminium alloy.The limit-sectional shrinkage without necking defects is achieved by combining theoretical calculation and finite-element model analysis,which couples heat transfer and deformation.In this paper,a 6082 aluminium alloy extruded rod with a 40 mm diameter rolled at a preheated temperature of 500℃and a rolling angular velocity of 1 rad/s is taken as an example.The simulation and experimental results show that necking defects do not occur on the rolled pieces if the sectional shrinkage is below the limit-sectional shrinkage but will occur when the sectional shrinkage is above it.The results prove that the prediction model of necking defects in cross-wedge rolling of 6082 aluminum alloy is feasible,and this research provides a theoretical basis for the qualified aluminum alloy shafts produced by the cross-wedge rolling.展开更多
The effect of a high magnetic field up to 30T on phase transformation temperature and microstructure of Fe-based alloys has been reviewed. A high magnetic field accelerates ferrite transformation, changes the morpho...The effect of a high magnetic field up to 30T on phase transformation temperature and microstructure of Fe-based alloys has been reviewed. A high magnetic field accelerates ferrite transformation, changes the morphology of the transformed microstructures and increases the A3 and A1 temperature. In a magnetic field of 30T, the A1 temperature increases by about 37.1℃ for Fe-0.8C, the A3 temperature for pure Fe increases by about 33.1℃. The measured transformation temperature data are not consistent with calculation results using Weiss molecular field theory. Ferrite grains are elongated and aligned along the direction of magnetic field in Fe-0.4C and Fe-0.6C alloys by ferrite transformation, but elongated and aligned structure was not found in pure Fe, Fe-0.05C alloy and Fe-1.5Mn-0.11C-0.1V alloy.展开更多
Shape memory alloys (SMAs) are well-known as high damping materials. Recently,we have reported that the Cu-Al-Mn SMAs show a high internal friction as well as the other SMAs such as Ni-Ti, Cu-Zn-Al SMAs. Since the Cu-...Shape memory alloys (SMAs) are well-known as high damping materials. Recently,we have reported that the Cu-Al-Mn SMAs show a high internal friction as well as the other SMAs such as Ni-Ti, Cu-Zn-Al SMAs. Since the Cu-Al-Mn-based SMAs possess an excellent cold-workability, a strong recrystallization texture can be formed by thermomechanical treatment. The present authors demonstrated that the texture control is considerably effective for improving the SM properties and especially, in the Cu-Al-Mn-Ni SMAs with a strong {112}<110> recrystallization texture, a large pseudoelastic (PE) of about 7% can be obtained. Such a texture control is expected to enhance the damping capacity in the Cu-Al-Mn-based SMAs as well as PE. In this study, the effect of texture on the internal friction in Cu-Al-Mn and Cu-Al-Mn-Ni SMAs was investigated by tensile testing mode of Dynamic Mechanical Spectrometer (DMS). In sheet specimens with the {112}<110> texture, value of dynamic damping tanφ depends on the loading direction and an excellent damping capacity of tanφ= 0.1 can be obtained at the rolling direction in the martensite phase condition. Moreover, these Cu-Al-Mn-based SMAs show a high tensile strength over 600 MPa in the martensite phase. The present Cu-Al-Mn-based SMAs should have a great potential as the damping materials.展开更多
Propellants containing micro-aluminium particles have been shown to produce faster burn rates than conventional gun propellants.However,they are also more abrasive than conventional propellants.Nano-material propellan...Propellants containing micro-aluminium particles have been shown to produce faster burn rates than conventional gun propellants.However,they are also more abrasive than conventional propellants.Nano-material propellants have been reported to give similar benefits to micron-material propellants but without the disadvantage of increased abrasion.Tests were conducted to compare the burn rates,ignitability and wear rates of a propellant loaded with 0% aluminium,15% micro-aluminium and 15%nano-aluminium.Closed vessel tests showed a burn rate increase of 39% in the range 30-250 MPa,and 70% at low pressure(50-100MPa)for the nano-aluminium propellant compared with the baseline propellant.The micro-aluminium propellant showed only a 10%increase in the burn rate compared with the standard propellant.The ignition delay for the nano-aluminium propellant was slightly shorter than that of the baseline propellant.Substantially increased wear rates were measured for the micro-aluminium propellant.The nano-aluminium propellant showed reduced wear rates compared with the micro-aluminium propellant but these were still substantially greater than those for the baseline propellant.展开更多
It is well known that the morphologies of the α’ martensite formed from the γ phase in ferrous alloys are classified into five types of lath, butterfly, (225)A type plate,lenticular and thin-plate. Among those α...It is well known that the morphologies of the α’ martensite formed from the γ phase in ferrous alloys are classified into five types of lath, butterfly, (225)A type plate,lenticular and thin-plate. Among those α’ martensites, only the thin-plate martensite,which is characterized by containing a high density of transformation twins, has a potential of exhibiting a perfect shape memory (SM) effect.Recently the present authors found in Fe-Ni-Si alloys that the thin-plate martensite is formed by the introduction of fine and coherent γ’-(Ni,Fe)3Si particles with a L12 ordered structure in the austenite matrix due to ausaging. In the present study, the SM properties of the ausaged Fe-Ni-Si alloys with the thin-plate martensite are investigated by a conventional bending-test. The effects of the addition of Co to the Fe-Ni-Si alloys on the martensitic transformation and the SM properties are also investigated. It is shown that while the ausaged Fe-Ni-Si ternary alloys exhibit an imperfect SM effect due to reverse transformation from stress-induced thin-plate martensite to austenite, the SM properties are improved by the addition of Co. An almost perfect SM effect is confirmed in the Fe-Ni-Si-Co alloys by heating to 1 100 ℃ after deformation at -196 ℃.展开更多
文摘Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
文摘It is well known that the magnetic properties such as the Curie temperature Tmag <sub>C and the mean magnetic moment β of ordered compounds have different values from those of the disordered solutions. For instance, both Tmag c and β of the Ni3Pt (L12) and NiPt (L10) and Tmag <sub>c of the CoPt (L10) and CoPt3 (L12) ordered compounds are strongly depressed due to the ordering compared with those of the metastable disordered Ni-Pt and Co-Pt alloys. On the other hand, the γ’-FeNi3 (L12) and the α’-FeCo (B2) ordered compounds have higher Tmag <sub>c and β values comparing with the disordered solution phases, γ (A1) and α (A2), respectively. In consequence, the stability of the ordered phase is depressed or enhanced due to the interaction between the chemical and magnetic ordering caused by the decrease or increase of Tmag <sub>c and β values. The purpose of this study is to investigate the effect of the interaction between the chemical and the magnetic ordering on the phase equilibria in the Fe-X(X=Al, Co, Ni, Rh, Si) binary systems.The Gibbs energy of the α(A2), γ(A1) and liquid phases is described by a sub-regular solution approximation. The ordering contribution to the Gibbs energy ,ΔGorder <sub>m, and deviations of magnetic properties, ΔTmag <sub>c and Δβ, of the ordered compounds, FeAl (B2), Fe3Al (D03), FeCo (B2), FeRh (B2), FeSi (B2), Fe3Si (D03) and FeNi3 (L12) is introduced by the split compound energy formalism. Effect of the interaction between the chemical ordering, B2, D03 and L12 and the magnetic ordering on the phase equilibria will be discussed according to the calculated phase diagrams of the Fe-X binary systems.
基金Project(2012ZX04010-8)supported by National Key Technology R&D Program of China
文摘The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy 7050 were investigated by hot uniaxial compression tests in order to obtain the material parameters used in the CA model. The influences of process parameters(strain, strain rate and temperature) on the fraction of DRX and the average recrystallization grain(R-grain) size were investigated and discussed. It is found that larger stain, higher temperature and lower strain rate(less than 0.1 s^(–1)) are beneficial to the increasing fraction of DRX. And the deformation temperature affects the mean R-grain size much more greatly than other parameters. It is also noted that there is a critical strain for the occurrence of DRX which is related to strain rate and temperature. In addition, it is shown that the CA model with topology deformation is able to simulate the microstructural evolution and the flow behavior of aluminium alloy 7050 material under various deformation conditions.
基金Project(51975301)supported by the National Natural Science Foundation of ChinaProject(LZ17E050001)supported by the National Natural Science Foundation of Zhejiang Province of China。
文摘Necking defects have long troubled the application of cross-wedge rolling technology in aluminium alloy shaft parts.To accurately predict necking defects,new judgement conditions are established based on the thermal performance of 6082 aluminium alloy.The limit-sectional shrinkage without necking defects is achieved by combining theoretical calculation and finite-element model analysis,which couples heat transfer and deformation.In this paper,a 6082 aluminium alloy extruded rod with a 40 mm diameter rolled at a preheated temperature of 500℃and a rolling angular velocity of 1 rad/s is taken as an example.The simulation and experimental results show that necking defects do not occur on the rolled pieces if the sectional shrinkage is below the limit-sectional shrinkage but will occur when the sectional shrinkage is above it.The results prove that the prediction model of necking defects in cross-wedge rolling of 6082 aluminum alloy is feasible,and this research provides a theoretical basis for the qualified aluminum alloy shafts produced by the cross-wedge rolling.
文摘The effect of a high magnetic field up to 30T on phase transformation temperature and microstructure of Fe-based alloys has been reviewed. A high magnetic field accelerates ferrite transformation, changes the morphology of the transformed microstructures and increases the A3 and A1 temperature. In a magnetic field of 30T, the A1 temperature increases by about 37.1℃ for Fe-0.8C, the A3 temperature for pure Fe increases by about 33.1℃. The measured transformation temperature data are not consistent with calculation results using Weiss molecular field theory. Ferrite grains are elongated and aligned along the direction of magnetic field in Fe-0.4C and Fe-0.6C alloys by ferrite transformation, but elongated and aligned structure was not found in pure Fe, Fe-0.05C alloy and Fe-1.5Mn-0.11C-0.1V alloy.
文摘Shape memory alloys (SMAs) are well-known as high damping materials. Recently,we have reported that the Cu-Al-Mn SMAs show a high internal friction as well as the other SMAs such as Ni-Ti, Cu-Zn-Al SMAs. Since the Cu-Al-Mn-based SMAs possess an excellent cold-workability, a strong recrystallization texture can be formed by thermomechanical treatment. The present authors demonstrated that the texture control is considerably effective for improving the SM properties and especially, in the Cu-Al-Mn-Ni SMAs with a strong {112}<110> recrystallization texture, a large pseudoelastic (PE) of about 7% can be obtained. Such a texture control is expected to enhance the damping capacity in the Cu-Al-Mn-based SMAs as well as PE. In this study, the effect of texture on the internal friction in Cu-Al-Mn and Cu-Al-Mn-Ni SMAs was investigated by tensile testing mode of Dynamic Mechanical Spectrometer (DMS). In sheet specimens with the {112}<110> texture, value of dynamic damping tanφ depends on the loading direction and an excellent damping capacity of tanφ= 0.1 can be obtained at the rolling direction in the martensite phase condition. Moreover, these Cu-Al-Mn-based SMAs show a high tensile strength over 600 MPa in the martensite phase. The present Cu-Al-Mn-based SMAs should have a great potential as the damping materials.
基金funded by the Defence Science and Technology Laboratory(Dstl)part of the UK MoD,under the Hazard Modelling and Simulation task of the UK Energetics(UK-E)programme now consumed by the Weapons Science and Technology Centre(WSTC)
文摘Propellants containing micro-aluminium particles have been shown to produce faster burn rates than conventional gun propellants.However,they are also more abrasive than conventional propellants.Nano-material propellants have been reported to give similar benefits to micron-material propellants but without the disadvantage of increased abrasion.Tests were conducted to compare the burn rates,ignitability and wear rates of a propellant loaded with 0% aluminium,15% micro-aluminium and 15%nano-aluminium.Closed vessel tests showed a burn rate increase of 39% in the range 30-250 MPa,and 70% at low pressure(50-100MPa)for the nano-aluminium propellant compared with the baseline propellant.The micro-aluminium propellant showed only a 10%increase in the burn rate compared with the standard propellant.The ignition delay for the nano-aluminium propellant was slightly shorter than that of the baseline propellant.Substantially increased wear rates were measured for the micro-aluminium propellant.The nano-aluminium propellant showed reduced wear rates compared with the micro-aluminium propellant but these were still substantially greater than those for the baseline propellant.
文摘It is well known that the morphologies of the α’ martensite formed from the γ phase in ferrous alloys are classified into five types of lath, butterfly, (225)A type plate,lenticular and thin-plate. Among those α’ martensites, only the thin-plate martensite,which is characterized by containing a high density of transformation twins, has a potential of exhibiting a perfect shape memory (SM) effect.Recently the present authors found in Fe-Ni-Si alloys that the thin-plate martensite is formed by the introduction of fine and coherent γ’-(Ni,Fe)3Si particles with a L12 ordered structure in the austenite matrix due to ausaging. In the present study, the SM properties of the ausaged Fe-Ni-Si alloys with the thin-plate martensite are investigated by a conventional bending-test. The effects of the addition of Co to the Fe-Ni-Si alloys on the martensitic transformation and the SM properties are also investigated. It is shown that while the ausaged Fe-Ni-Si ternary alloys exhibit an imperfect SM effect due to reverse transformation from stress-induced thin-plate martensite to austenite, the SM properties are improved by the addition of Co. An almost perfect SM effect is confirmed in the Fe-Ni-Si-Co alloys by heating to 1 100 ℃ after deformation at -196 ℃.