期刊文献+
共找到141篇文章
< 1 2 8 >
每页显示 20 50 100
LASER PROBE ^(40)Ar/ ^(39)Ar DATING OF MICAS ON THE DEFORMED ROCKS FROM ALTYN FAULT AND ITS TECTONIC IMPLICATIONS,WESTERN CHINA 被引量:8
1
作者 Liu Yongjiang\+1, Ye Huiwen\+1, Ge Xiaohong\+1, Liu Junlai\+1, Pan Hongxun\+1, Chen Wen\+2 2 Laboratory of Isotopic Chronology, Institute of 《地学前缘》 EI CAS CSCD 2000年第S1期233-234,共2页
Recently, the Altyn strike\|slip fault in western China has become a hot topic to the research on continental dynamics of Tibetan Plateau. The chronological research is very important to constrain the age of tectono\|... Recently, the Altyn strike\|slip fault in western China has become a hot topic to the research on continental dynamics of Tibetan Plateau. The chronological research is very important to constrain the age of tectono\|thermal event within Altyn fault belt. Many isotopic dating researches, related to the ophiolites, high\|pressure metamorphic rocks and some granitic rocks, have been done by Chinese and foreign geologists in the area. There, however, are only few isotopic dating researches on the syntectonic\|growing minerals within Altyn fault. We collected a sample of Caledonian mylonitized granite (At3a) in the north of Dangjin pass and two samples of Jurassic meta\|sedimentary rocks in Qaidam gate fault\|valley (At37c) and Geshi fault\|valley (At30d). All the samples contain the syntectonic\|growing minerals such as white mica, chlorite, sericite and biotite etc. By dating these minerals, we can constrain the time of the tectonic events occurred in Altyn fault belt.Sample At3a, mylonitized granite, has been strongly deformed with undulating extinction of quartz. The plagioclase and quartz were elongated and surrounded by fine\|grained white micas and chlorites with strain shadow texture. These suggest that the sample has been suffered ductile deformation. The estimation of p\|T condition is 350℃, 180MPa. The isochronal age of (89.2±1.6)Ma has been obtained by laser probe 40 Ar/ 39 Ar dating analyses of six white mica grains. 展开更多
关键词 Ar/ 39 AR GEOCHRONOLOGY tectonic altyn fault
在线阅读 下载PDF
RESEARCH PROGRESS OF ALTYN FAULT IN WESTERN CHINA 被引量:6
2
作者 Ge Xiaohong, Ye Huiwen, Liu Yongjiang, Liu Junlai, Pan Hongxun, Ren Shoumai (College of Earth Sciences, Changchun University of Science and Technology, Changchun 130061,China) 《地学前缘》 EI CAS CSCD 2000年第S1期243-244,共2页
As the northern boundary of Tibetan Plateau, the Altyn strike\|slip fault in western China has a very important implication to the tectonic division in the middle Asia continent, and has become a hot topic for the res... As the northern boundary of Tibetan Plateau, the Altyn strike\|slip fault in western China has a very important implication to the tectonic division in the middle Asia continent, and has become a hot topic for the research on continental dynamics of Tibetan Plateau. During the research of our project funded by NSFC, we collected a sample of Caledonian mylonitized granite in the north of Dangjin pass and two samples of Jurassic meta\|sedimentary rocks in Qaidam gate fault\|valley and Geshi fault\|valley. The texture study shows that all samples were reformed by ductile deformation with undulating extinction and elongated quartzes. The metamorphic p\|T condition are estimated to be 350~500℃ and 150~450MPa They contain the syntectonic\|growing minerals such as white mica, chlorite, sericite and biotite etc. By dating these minerals, we obtain a group white mica 40 Ar/ 39 Ar isochronal age of 89 2~91 7Ma and a (46 6±6 4)Ma sericite 40 Ar/ 39 Ar apparent age. These data are very important to determine the strike\|slip age of Altyn fault.The 40 Ar/ 39 Ar age data (91~46Ma), we obtained, are reported for the first time in the researches of Altyn fault belt. The ages of 91~89Ma indicate that Altyn fault began to slip with slight metamorphism around late Jurassic. These ages are consistent with the ages of the collision between Kohistan\|Ladakh massif (northwestern India) and Eurasian continent at 102~85Ma.This suggests that the strike\|slip movement of Altyn fault should be related to the formation of the so\|called“Western tectonic joint" in Nepal\|western Kunlun area. The age of 46Ma should represent the overprint age of the tectono\|thermal event during main collision between Indian and Eurasian continents along the Yarlung Zangbo River. With the continent\|continent collision of Indian and Eurasian Plates, Altyn fault underwent Multi\|phase strike\|slip events in late Paleocene—Oligocene (37~35Ma), Miocene (22~20Ma), Miocene—Pliocene (8~6Ma), Pliocene (2 5Ma) and early Pleistocene (1~0 7Ma), respectively. The eastern extension of Altyn fault has two branches, one to Xar Moron River with around 3500km length, and another to Okhotsk Ocean with about 4500km length. So Altyn fault is the biggest strike\|slip fault in Cenozoic in the Middle Asia continent, it is characterized by sinistral strike\|slip movement. The basins and tectonic belts, formed before late Jurassic, on the both side of Altyn fault should be displaced. Therefore, the tectonic outline of western China should be re\|recognized. 展开更多
关键词 RECONSTRUCTION GEOCHRONOLOGY TECTONIC altyn fault
在线阅读 下载PDF
NORMAL-SLIP ALONG THE NORTHERN ALTYN TAGH FAULT, NORTH TIBET 被引量:2
3
作者 Yin An 1, George Gehrels 2, Chen Xunhua 3, Wang Xiao\|Feng 3, T. Mark Harrison 1, Shen Jie 1 《地学前缘》 EI CAS CSCD 2000年第S1期237-238,共2页
The east\|west striking Northern Altyn Tagh Fault, about 240km long between Bashkaogong (90°E, 39°25′N) and Lapeiquan (92°15′E, 39°25′N), was previously mapped as a north\|dipping thrust, juxtap... The east\|west striking Northern Altyn Tagh Fault, about 240km long between Bashkaogong (90°E, 39°25′N) and Lapeiquan (92°15′E, 39°25′N), was previously mapped as a north\|dipping thrust, juxtaposing late Archean\|Mesoproterozoic gneisses in the hanging wall over Paleozoic volcanics, plutons, turbidite, and melange complexes in the footwall. In order to estimate the total magnitude of slip along the Cenozoic Altyn Tagh fault, we conducted geologic mapping along four traverses across the Jinyan Shan where the fault lies. Our field observations suggest that the fault is south\|dipping, with dip angles varying from <25° in the east to about 40° in the west. The eastern fault zone exhibits mylonitic fabrics, whereas the western fault zone is characterized by cataclastic deformation. Kinematic indicators in the ductily deformed mylonitic shear zone consistently show a top\|to\|the\|south sense of shear, suggesting that the Northern Altyn Tagh fault is a south\|dipping normal fault, not a north\|dipping thrust.. The ductile shear zone is typically 30~40m thick, consisting of highly sheared metasediments (pelite and marble), granites, and granitic veins.The latter are systematically cut by small\|scale, south\|dipping ductile normal faults with displacements between 10s of cm to several meters, forming spectacular asymmetric boudinages in the sheared meta\|pelite matrix.The minimum displacement along the detachment is about 20km, as measured by the north\|south width of the exposed footwall gneisses. We renamed the Northern Altyn Tagh Fault in the Jinyan Shan region as the Lapeiquan detachment fault to avoid confusion with other east\|west trending Cenozoic faults to the west along the northern edge of the Altyn Tagh range (e.g., the Cenozoic Jianglisai fault near Qiemo), collectively known as the Northern Altyn Tagh fault system (see Cowgill et al., Geology,in press). The lower age bound of the Lapeiquan fault is Ordovician, as the fault cuts Ordovician volcanics and plutons in its hanging wall. As the Ordovician volcanic rocks are folded together with Carboniferous marbles and Jurassic sedimentary strata, it is likely that normal faulting along the Lapeiquan detachment postdates the Jurassic. The Lapeiquan detachment fault is covered by Quaternary sediments of the Tarim basin in the west, and is apparently truncated by the Cenozoic left\|slip Altyn Tagh fault to the east as indicated by regional geologic maps. If true, this relationship implies that the Lapeiquan fault predates the Cenozoic Altyn Tagh fault. The apparent truncational relationship between the Lapeiquan fault and the Altyn Tagh fault posses an important question: where is the counterpart of the Lapeiquan fault south of the Altyn Tagh fault? Preliminary mapping in the Yema Nan Shan south of the Altyn Tagh fault reveals a fragment of a low\|angle mylonitic shear zone, which is interpreted as a detachment fault because it puts lower\|grade meta\|pelite over higher\|grade mylonitic quartzite. The correlation of detachment faults in the Yema Nan Shan and the Lapeiquan area would imply an amount of about 280~300km left slip along the Altyn Tagh fault. Alternatively, movement along the Lapeiquan detachment fault could have been synchronous with the development of the Cenozoic Altyn Tagh fault. This interpretation requires no counterpart of the Lapeiquan fault south of the Altyn Tagh fault. Instead, it implies that a major topographic collapse event occurred in the Cenozoic along the northern edge of the Tibetan plateau during movement along the Altyn Tagh fault. On\|going thermochronologic analysis will provide constraints on the age of the detachment fault and a test for the two distinctive hypotheses. 展开更多
关键词 DETACHMENT fault NORTHERN altyn Tagh fault TIBET
在线阅读 下载PDF
LARGEST ALTYN TAGH LITHOSPHERIC SHEAR FAULT IN CENTRAL ASIA 被引量:1
4
作者 Xu Zhiqin 1, Yang Jingsui 1, Zhang Jianxin 1, Jiang Mei 1, Li Haibing 1,Liou J.G. 2 2 Department of Geological & Environmental Sciences,St 《地学前缘》 EI CAS CSCD 2000年第S1期231-232,共2页
The Altyn Tagh fault (ATF) extending in NEE—SWW direction lying at the northwestern boundary of Qinghai—Tibet plateau is the largest strike\|slip fault in Central Asia. On the basis of recent geologic mapping and de... The Altyn Tagh fault (ATF) extending in NEE—SWW direction lying at the northwestern boundary of Qinghai—Tibet plateau is the largest strike\|slip fault in Central Asia. On the basis of recent geologic mapping and detailed study of lithotectonic characteristics for the paleotectonic units at the two sides of the Altyn Tagh Fault ( Altun Mt. to west and the Qilian Mt. to east ) we propose that the paleotectonic units in the Altun Mt. can be correlated with those in the Qilian Mt. assuming 400km left\|lateral displacement for the Altyn Tagh fault. Natural seismic data across the Altun Mt. indicate that the Altyn Tagh fault is a lithospheric shear fault and the lithospheric shearing is probably related to southward intracontinental oblique subduction of the Tarim terrane beneath the Altun Mt.1\ Comparison of the major paleotectonic units at the two sides of the Altyn Tagh fault\;(1) The Alxa\|Dunhuang Massif:The Alxa massif lying at the southern margin of the Sino\|Korean craton consists mainly of an Early Proterozoic basement including high\|grade and middle\|grade metamorphic rocks, which were intruded by granite at 1719Ma. The Paleozoic passive margin sediments is well developed. In the Altun Mt., the Early Proterozoic and late Archean basement of the Duhuang massif includes high\|grade and middle\|grade metamorphic rocks dating 2789Ma (Sm\|Nd method) and 2405Ma (U\|Pb method). 展开更多
关键词 LITHOSPHERIC SHEAR fault paleotectonic unit SEISMIC the altyn Tagh fault Central ASIA
在线阅读 下载PDF
AGE OF THE ALTYN TAGH STRIKE—SLIP FAULT 被引量:1
5
作者 Li Haibing 1, Yang Jingsui 1, Xu Zhiqin 1, Wu Cailai 1, Zhang Jianxin 1, Wan Yushen 1, Shi Rendeng 1, Juhn G. Liou 2,Trevor R. Ireland 2 (1 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China 2 Department of 《地学前缘》 EI CAS CSCD 2000年第S1期208-209,共2页
A 100~500m\|wide mylonite zone in the Altun Group of Lower Proterozoic age was discovered along the Altyn Tagh strike\|slip fault. The zone is mainly composed of amphibolitic and granitic mylonites. The planar joints... A 100~500m\|wide mylonite zone in the Altun Group of Lower Proterozoic age was discovered along the Altyn Tagh strike\|slip fault. The zone is mainly composed of amphibolitic and granitic mylonites. The planar joints of the rocks strike in NE70 and dip steeply (nearly vertical), coincident with the striking of Altyn Tagh fault zone, and their stretched lineations are nearly horizontal. Shear strains are well developed and show sinistral sheared. The amphibolitic and granitic mylonites are most probably the products of deep\|seated melting caused by sinistral strike\|slip shearing as suggested by the evidence below: (1) The migmatization is intensely developed and spatially controlled by the shear zone, and the rock has a set of NNE perspective foliation which is in accord with the direction of the Altyn Tagh strike\|slip fault zone. (2) The recrystallized hornblende aggregate is distributed in band with obvious nebulous texture, indicating the characteristics of anatexis, and the hornblendes are oriented and form the nearly horizontal stretching lineation; some hornblendes have titanite inclusions, and magmatic long\|columnar zircons are in directional arrangement.(3) The banded felsic material is developed, and the plagioclase is characteristic of high\|temperature plastic deformation and shows sinistral shear stain. (4) In mylonites, all the axis C fabric of quartz shows the feature of sinistral shearing and the majority is generally middle to low temperature fabric, but there also exists high temperature fabric, which suggests that high temperature shearing occur in the early stage of strike\|slip deformation and it is characterized by middle to low temperature shearing at the beginning of anatexis or in the late stage of the deformation. (5) On the XZ plane of mylonite and mylonitized rocks, there exists the consistent sinistral shear stain, which suggests the products of the same strike\|slip shearing.Zircons were separated from three samples of mylonitized granitic rocks for age dating. Two groups of zircon were distinguished in morphology: one is elongate prismatic grains, and the other shows slight rounding. Some zoned structure of selected grains were examined by cathodoluminescence. Dating was completed in the SHRIMP laboratory of Stanford University. Fifteen analyses were made on 14 zircon grains. Sample S99\|25 show two obvious two age groups, one is 527~549Ma, and the other is 466~472Ma. Sample S99\|9 contains two age groups either, one is 475~507Ma and the other is 279Ma. Sample S99\|6 shows three groups: ① 528Ma; ② 365Ma and③ 238~243Ma, here the 365Ma is explained as mixture age between the other two age groups according to its exact location in the grain. In summary, from the three samples we found at least three age groups: 507~548Ma; 466~472Ma; 238~243Ma.The ages of 507Ma to 548Ma and 466Ma to 472Ma represent the deformation and metamorphism of Early Paleozoic age, which is most likely correspond to the close of the Qilian Sea and continental subduction and collision reported in recent papers (Yang Jingsui et al., 1998; Zhang Jianxin et al., 1999; Xu Zhiqin et al., 1999). The 238~243Ma most likely represent the formational age of the Altyn Tagh strike\|slip fault, which is consistent with the formational age (200~240Ma) of the large\|scale sinistral strike\|slip fault zone of the South Margin of East Kunlun (Li Haibing et al., 1996), and both can be attributed to the oblique subduction and collision of the Bayan Har terrane with the East Kunlun terrane during Indosinian period. 展开更多
关键词 altyn Tagh fault Tibet PLATEAU SHRIMP DATING MYLONITE
在线阅读 下载PDF
THE FORMATION AND EVOLUTION OF ALTYN TAGH FAULT SYSTEM AND ITS RELATIONSHIP TO THE GROWTH OF TIBETAN PLATEAU 被引量:1
6
作者 Wang Xiaofeng\+1, Yin An\+2, Peter Rumelhart\+2, Eric Cowgill\+2, Chen Xuanhua\+1, Chen Zhengle\+1, T.Mark Harrison\+2, Zhang Yueqiao\+1,Zhang Qing\+1, Zhou Xianqiang\+1 《地学前缘》 EI CAS CSCD 2000年第S1期264-264,共1页
One of the focus views of the uplifting of Tibetan Plateau is the growth history of the plateau. This is an unresolved question because of the poor study in north margin, where the ATF (Altyn Tagh Fault) is acting an ... One of the focus views of the uplifting of Tibetan Plateau is the growth history of the plateau. This is an unresolved question because of the poor study in north margin, where the ATF (Altyn Tagh Fault) is acting an important role in the growth and deformation of the plateau. The fault links two huge contractional belts, e.g. Qilian Nan Shan and West Kunlun, and merges a series of thrusting\|folding arcs in southeast. Mapping of piercing points, such as unconformities between Cenozoic, Mesozoic and Paleozoic strata, and magmatic arcs, shows left slips of ca. 240km and ca. 550km along the middle and western segments of the ATF. About 140~450km of crustal shortening, approximately the same magnitude as the west segment of the ATF, is deduced from balanced sections in West Kunlun foreland thrusting belt. This implies that left\|slip displacement along the west segment of the ATF was absorbed by the contraction in West Kunlun. The ATF system merged bunches of WNW arcuated fold\|fault belts in Qaidam basin, implying anti\|clockwise rotation. Tertiary and some Lower to Middle Pleistocene strata involved in fold\|fault belts, and dip in ESE due to the uplifting of Altyn Tagh. The newest strata involved in the deformation is more and more younger from south to north, that is, from Lower Pliocene to Middle Pleistocene, showing the uplifting trends from south to north in the SE side of the fault. 展开更多
关键词 altyn Tagh fault SLIP MAGNITUDE BASIN GROWTH series denudat ion
在线阅读 下载PDF
SEDIMENTARY PROCESS OF THE CENOZOIC BASIN AND ITS RESPONSE TO THE SLIP-HISTORY OF THE ALTYN TAGH FAULT, NW CHINA 被引量:1
7
作者 Chen Zhengle 1, Zhang Yueqiao 1, Chen Xuanhua 1,Wang Xiaofeng 1, Z.Washburn 2,J.Arrowsmith 2 2.Department of Geology, Arizona State Unive 《地学前缘》 EI CAS CSCD 2000年第S1期245-246,共2页
The NEE\|striking Altyn Tagh Fault (ATF) has been well known as one major point to know the growth history of the Tibetan plateau. Lots of investigations done since 1970’s were mostly focus on active features, partic... The NEE\|striking Altyn Tagh Fault (ATF) has been well known as one major point to know the growth history of the Tibetan plateau. Lots of investigations done since 1970’s were mostly focus on active features, particularly on determining slip, slip rate and their distribution along the fault. However, Cenozoic slip\|history of this fault remains poorly understood, and the age of initiation and total offset are controversial. Several Cenozoic sedimentary basins develop in Suo’erkulinan to Mangya regions (Fig.1). Their sedimentary processes are closely related with the ATF. The studies of the Neogene sedimentary sequences and the reconstruction of the paleo\|geography are essential to establish the displacement history of the fault during Late Cenozoic.Located at the southern side of the ATF, the Suo’erkulinan basin consists of more than 600\|meter\|thick Pliocene Shizigou Formation below and about 120\|meter\|thick Early to Middle Pleistocene Qigequan Formation above according to the 1∶200000 geological map by Xinjiang Province. An obvious erosional surface can be seen on the top of the lower sequence. Sediments in the Shizigou Formation are characterized by 400\|meter\|thick yellow to red cobble\|sized conglomerates in the bottom, up\|grading to sandstones and grey\|green mudstones. This indicated that the sedimentary facies changed from alluvial fan to fluvial fan and sediments became more and more mature. The upper sequence, the Qigequan Formation, corresponds to an alluvial facies series composed of yellow to white cobble\|sized conglomerates intercalated with lenticular sandstones. Paleo\|current indicators showed that the Shizhigou conglomeratic series were sourced from northwest. Well\|developed syn\|sedimentary faults, normal faults mostly inherited from syn\|sedimentary faults, and some striation lineations on the surface indicated transtensional tectonic environment of the strike\|slip faulting. 展开更多
关键词 altyn Tagh fault CENOZOIC BASINS SEDIMENTARY PROCESS slip\| HISTORY reconstruction of the paleo\|geography
在线阅读 下载PDF
CENOZOIC ALTYN TRANSFORM FAULT OF THE NORTHERN PART OF THE TIBETAN PLATEAU
8
作者 Wang Genhou,Gao Jinhan,Wang Xiaoniu (China University of Geosciences, Beijing 100083,China) 《地学前缘》 EI CAS CSCD 2000年第S1期159-160,共2页
The transform fault is essentially a displacement fault whose terminal part is adjusted by other tectonic types, its displacement component is absorbed by other structures intersected with it by high angles or meet at... The transform fault is essentially a displacement fault whose terminal part is adjusted by other tectonic types, its displacement component is absorbed by other structures intersected with it by high angles or meet at right angles. The main elements of transform fault are the sleep\|dipping displacement faults and the adjusted structures intersected with it at high angles. According to the combination of tectonic features formed by its two ends of displacement fault and the structures intersected with it, the transform fault can be divided into three types, including the adjusted transform fault of extensional normal fault, the adjusted transform fault of compressive fold and thrust fault, and the compound transform fault. The transform fault is different from the displacement fault, its horizontal displacement may be increased or decreased or not be changed at all as the time of fault movement extended, but for parallel displacement the dislocation will be increased. Therefore, the study of transform fault is very important for the recognition of long time disputed displacement components of huge displacement fault. The traditional Altyn fault is the adjusting fault of the compression deformation of the Western Kunlun and Northern Qilian mountains of the northern margin of the Tibetan Plateau since Cenozoic. 展开更多
关键词 transform fault altyn TIBETAN PLATEAU adjustment DISPLACEMENT fault
在线阅读 下载PDF
CENOZOIC DISPLACEMENT HISTORY OF THE ALTYN TAGH FAULT:GEOLOGICAL EVIDENCE FROM FIELD OBSERVATIONS IN SOUERKULI AND MANGAR REGIONS, NW CHINA
9
作者 Zhang Yueqiao 1, Chen Zhengle 1, Z.Washburn 2, Wang Xiaofeng 1, J. R.Arrowsmith 2(1 The Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China 2.Department of Geology, Arizona State University, Tempe, AZ, 85287,USA 《地学前缘》 EI CAS CSCD 2000年第S1期210-211,共2页
The ENE\|striking Altyn Tagh Fault (ATF) has been well known as a large, active left\|lateral strike\|slip fault that bounds the thrusting systems in NE Tibet.This fault has been the focal point in the debate between ... The ENE\|striking Altyn Tagh Fault (ATF) has been well known as a large, active left\|lateral strike\|slip fault that bounds the thrusting systems in NE Tibet.This fault has been the focal point in the debate between the discrete extrusion vs. distributed crustal shortening models. Although its active left\|lateralstrike\|slip features have been largely investigated and well documented by both satellite imagery and air\|photo interpretations and field observations, little study has been done upon its Cenozoic displacement history. Questions about the age of initiation and total offset accumulated on the fault remain controversial. A key area to resolve such question is located along the central segment of the fault in the Souerkuli and Mangar regions, where Neogene sedimentary basins well develop and are mostly distributed in three zones, namely from east to west: the Gobiling, Yitunbulak and Yusuale Tagh (Fig.1). Our field investigations were conducted along the ATF cutting the Yitunbulak and Gebiling Neogene sedimentary basins. Two stratigraphic unconformities observed within this Neogene conglomeratic series allow a separation of three major stratigraphic sequences and record the initiation and major deformational episodes of ATF during Cenozoic. An early stratigraphic unconformity occurred between a yellow depositional series below and early Pliocene red\|colored conglomeratic mudstones above. A later stratigraphic unconformities occurred between early and late Pliocene sedimentary series. The lower series below the early stratigraphic unconformities is mainly composed of a conglomeratic rocks containing cobbles and pebbles of basement rock units (mostly mylonitic granites, limestones and quartzes); this series has been poorly mapped and dated; its age could be assigned to late Oligocene to early Miocene; this series tilts to NW with an angle of about 30° and is overlain in angular unconformity by early Pliocene pebble\|sized conglomerates. A weathering zone on top of the lower conglomeratic series is clearly seen, that represents a long period of uplift and erosion. This lacuna occurred between early Miocene and early Pliocene in the west Qaidam basin, which has been documented only locally. Early Pliocene deposits correspond to alluvial to lacustrine facies rocks deposited in strike\|slip basin probably originated at releasing bend of the strike\|slip ATF; late Pliocene deposits is composed by fluviatile conglomerates and fanglomerates lying in unconformity on the upper Pliocene rocks. Early Quaternary deposits are absent along the ATF and have been well documented in the Qaidam basin. Late Quaternary fanglomerates infills active fault valleys. 展开更多
关键词 left\|lateral OFFSET CENOZOIC altyn Tagh fault
在线阅读 下载PDF
THREE-DIMENSIONAL DEFORMATION ALONG THE ALTYN TAGH FAULT ZONE AND UPLIFT OF THE ALTYN MOUNTAIN, NORTHERN TIBET
10
作者 Li Haibing, Yang Jingsui, Xu Zhiqin, Zhang Jianxin, Wu Cailai,Shi Rendeng (Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing 100037, China,E\|mail: lihaibing@yeah.net yangjsui@public.bta.net.cn) 《地学前缘》 EI CAS CSCD 2000年第S1期257-258,共2页
he convergence between India and Eurasia is partly accommodated by motion of a few large blocks along strike\|slip faults. About 1800km long Altyn Tagh fault strikes in N60~80°E and allows the northeastward disp... he convergence between India and Eurasia is partly accommodated by motion of a few large blocks along strike\|slip faults. About 1800km long Altyn Tagh fault strikes in N60~80°E and allows the northeastward displacement of the Tibet plateau relative to the Tarim. The Altyn Tagh fault zone is a typical transpressional fault zone, characterized by blocks rotation and crustal shortening and vertical extrusion of blocks within the Altyn Tagh strike\|slip system. Differences of three\|dimensional deformation and configuration of the active structures are recognized at different segment of the Altyn Tagh fault zone.1\ Structural configuration of the Altyn Tagh fault zone\;In the Altyn Tagh strike\|slip fault zone, the assemblage pattern of the (active) faults is in the form of parallel plumes, especially in the eastern and the western segments of the Altyn Tagh fault zone. These plumes structures in the eastern segment are assembled by string\|like left lateral strike\|slip fault and broom\|like thrusting faults, and in the western segment by arc\|like left lateral strike\|slip faults along with thrusting faults and normal faults. In the middle segment of the Altyn Tagh fault zone, the structures are characterized by the string\|like left lateral strike\|slip faults in the center and reverse thrusting faults on the two sides. 展开更多
关键词 three\|dimensional DEFORMATION UPLIFT MOUNTAIN building t ranspression altyn Tagh fault TIBET
在线阅读 下载PDF
CRETACEOUS (?) VOLCANIC ROCKS ON THE NORTH END OF THE ALTYN TAGH FAULT:CHARACTERISTICS AND TECTONIC IMPLICATIONS
11
作者 Meng Fancong, Yang Jingsui, Zhang Jianxin, Wu Cailai, Shi Rendeng, Li Haibing, Li Tianfu 《地学前缘》 EI CAS CSCD 2000年第S1期218-220,共3页
The age and evolutional history of the Altyn Tagh fault and its role in the formation and uplift of the Qinghai—Tibetan plateau have been focused for years. Many geologists believe that the formation of the fault is ... The age and evolutional history of the Altyn Tagh fault and its role in the formation and uplift of the Qinghai—Tibetan plateau have been focused for years. Many geologists believe that the formation of the fault is a result of the collision between India and Asia. Some people thought that it should have formed earlier than Cenozoic but have no critical evidence. Here we report a preliminary result from our recent investigation on the volcanic rocks at the north end of the Altyn Tagh fault.1 The volcanic rocks on the north end of the Altyn Tagh fault The volcanic rocks are located on the north end of the Altyn Tagh fault, northern Qinghai—Tibetan plateau. The investigated volcano occurs in the Jiuxi basin, a Cretaceous and Tertiary depositional basin. It is about 300m×100m in size and form about a 100m high cliff above the folded Cretaceous strata. It likes relic neck of a volcano rather than a kind of widely distributed lava flow commonly seen in the northern Tibet. The country rocks are Cretaceous sandstone, silt and fine\|grained conglomerate. The cliff formed most likely due to the differing erosion between the hard volcanic rocks and soft rocks. 展开更多
关键词 VOLCANIC ROCKS altyn Tagh fault Jiuxi Hoh Xil TIBET Gansh u
在线阅读 下载PDF
LARGE-SCALE STRAIN PATTERNS,GREAT EARTHQUAKE BREAKS,AND LATE PLEISTOCENE SLIP-RATE ALONG THE ALTYN TAGH FAULT (CHINA)
12
作者 A.S.Meriaux 1,2 ,P.Tapponnier\+1,F.J.Ryerson\+2,Xu Xiwei\+3,Wang Feng 1,3 ,J.Vanderwoerd\+1 (1.Institut de Physique du Globe,4 Place Jussieu,75252 Paris Cedex 05,France 2.Lawrence Livermore National Laboratory,Livermore CA 94550,USA 3.Institute 《地学前缘》 EI CAS CSCD 2000年第S1期230-230,共1页
Fieldwork along several segments of the Altyn Tagh Fault,between 85 and 95°E,confirms that it ranks as one of the most active faults of Asia.In the East,near Aksay,the active fault trace offsets numerous stream c... Fieldwork along several segments of the Altyn Tagh Fault,between 85 and 95°E,confirms that it ranks as one of the most active faults of Asia.In the East,near Aksay,the active fault trace offsets numerous stream channels,terrace risers and fans tens to hundreds of meters. 14 C dating of organic remains and charcoal within terrace gravels indicates that most of the terraces were emplaced after the beginning of the Holocene,implying a left\|slip rate of about 2cm/a.Large mole tracks attest to the occurrence of great earthquakes.Even larger mole tracks are found north of Lenghu,within the Altun Shan push\|up,a 6000 m high range in a restraining bend of the fault,now sliced by its most active strand.North of Huatougou,at the transition between another push\|up mountain and a recent pull\|apart basin,a spectacular sequence of five flat\|floored,hanging channels,beheaded by the fault from a unique source in the mountain,have been horizontally displaced by up to 1250m.Cosmogenic dating of the abandonment of these channels and of nearby offset terrace risers confirms the slip\|rate at Aksay.Several km to the west,pressure ridges exceeding 10m in height across a large young fan,imply the repeat of several great earthquakes in a relatively short time span. 展开更多
关键词 large\|scale STRAIN patterns EARTHQUAKE BREAKS LATE Plei stocene altyn Tagh fault
在线阅读 下载PDF
THE ALTUN—NORTH QAIDAM ECLOGITE BELT IN WESTERN CHINA—ANOTHER HP-UHP METAMORPHIC BELT TRUNCATED BY LARGE SCALE STRIKE-SLIP FAULT IN CHINA 被引量:4
13
作者 Zhang Jianxin, Xu Zhiqin, Yang Jingsui, Li Haibing, Wu Cailai(Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang, Beijing 100037,China, E\|mail: zjx66@yeah.net) 《地学前缘》 EI CAS CSCD 2000年第S1期254-255,共2页
The Altun and North Qaidam Mountains at the northern margin of Qinghai\|Tibet plateau are separated by the Altyn Tagh sinistral strike\|slip fault, which is one of the largest strike\|slip fault systems in the world a... The Altun and North Qaidam Mountains at the northern margin of Qinghai\|Tibet plateau are separated by the Altyn Tagh sinistral strike\|slip fault, which is one of the largest strike\|slip fault systems in the world and was considered as the key element in the escape tectonics model for Euraisa\|India continent\|continent collision.Recently,the eclogites within quratzifeldspathic gneisses or pelitic gneisses characterized by amphibolite\|facies paragenesis were discovered in the Altun and the North Qaidam Mountains(Fig.1). They occur as lens or boundins within the Altun Group and Dakendaban Group respectively which previously were considered as metamorphic basement of Tarim block and Qaidam block. Our studies indicate that the eclogites outcrop in both the Altun and North Qaidam Mountains show similar occurrences, associated country rocks, rock and mineral assemblages, p\|T\% estimates, geochemistryand protolith feature and ages of peak metamorphism (see table) . The garnet\|omphacite\|phengite geothermobarometer gave equilibrium condition of \%p\%=2 8~3 0GPa and t =820~850℃ for the Altun eclogite and p =2 8GPa and \%t\%=730℃ for North Qaidam eclogite respectively(Fig..2). These p\|T conditions are in the coesite stability field. Moreover, Po lycrystalline quartz pseudomorphs after coesite have been identified in the Dulan area, North Qaidam Mountains (Song et al, in review). Therefore, these features suggest that both eclogites of Altun and North Qaidam Mountains probably are a same HP\|UHP metamorphic belt formed from the same of Early Paleozoic age deep subduction and collision, and subsequently displaced by the Altyn Tagh fault.The case is similar to the Dabie\|Sulu HP\|UHP metamorphic zone which was truncated by the Tanlu sinistral strike\|slip fault and splitted it into two distincts, the Dabie region and Sulu region. These correlations support an about 350~400km displacement of the Altyn Tagh sinistral strike\|slip fault (Fig.1). 展开更多
关键词 Altun MOUNTAINS North Qaidam MOUNTAINS HP\|UHP METAMORPHIC b ELT altyn Tagh fault
在线阅读 下载PDF
阿尔金断裂带东西两端构造转换与扩展过程:从三联点谈起 被引量:1
14
作者 衣可心 Marc Jolivet 郭召杰 《地质力学学报》 北大核心 2025年第1期24-38,共15页
阿尔金断裂带作为青藏高原北缘的关键构造边界,其演化历史和构造转换机制对理解青藏高原的生长极为重要。阿尔金断裂带不同分段的构造环境与演化历程不同,其各自与祁连山造山带和祁曼塔格-东昆仑断裂带的构造转换研究也仍有不足之处。... 阿尔金断裂带作为青藏高原北缘的关键构造边界,其演化历史和构造转换机制对理解青藏高原的生长极为重要。阿尔金断裂带不同分段的构造环境与演化历程不同,其各自与祁连山造山带和祁曼塔格-东昆仑断裂带的构造转换研究也仍有不足之处。三联点分析是板块构造学中的重要分析方法,速度三角形反映了断裂属性,三联点稳定性则从运动学角度揭示了断裂的演化方向和历程。综合地质、地貌与地震资料,系统分析了阿尔金断裂带中段与东西段代表性的肃北与吐拉三联点的构造特征与活动历史;并借助三联点稳定性准则,构建了这2个三联点的演化模型。研究结果表明,野马河-大雪山断裂与祁曼塔格-东昆仑断裂带启动,不稳定三联点形成并向稳定三联点转化,促使阿尔金断裂带“截弯取直”,并在此基础上提出了分段破裂-双向扩展模型。这一结果为理解青藏高原北缘复杂的构造演化历史提供了新的视角。 展开更多
关键词 阿尔金断裂带 青藏高原北缘 三联点 构造转换 祁连山造山带
在线阅读 下载PDF
带控制点的柴达木盆地莫霍面重震联合反演
15
作者 李忠华 李朝阳 +1 位作者 董冬冬 郭德乐 《高校地质学报》 北大核心 2025年第3期363-374,共12页
为探究柴达木盆地浅部形变的深部动力响应机制,文章在布格重力异常资料的基础上,以深地震剖面、天然地震层析成像等资料为控制点,逐步求得最佳基准面,反演了莫霍面的空间展布形态。结果显示,响应于浅部构造形变的空间变化,柴达木盆地莫... 为探究柴达木盆地浅部形变的深部动力响应机制,文章在布格重力异常资料的基础上,以深地震剖面、天然地震层析成像等资料为控制点,逐步求得最佳基准面,反演了莫霍面的空间展布形态。结果显示,响应于浅部构造形变的空间变化,柴达木盆地莫霍面深度东、西部差异性同样显著。盆地西部浅部形变较强,广泛发育逆冲缩短构造,莫霍面相对较深,约55~61 km。盆地东部整体形变较弱,主要集中于盆地边缘,莫霍面则相对较浅,约48~61 km。除此之外,东昆仑山与柴达木盆地东部之间还存在一个巨大的陡阶带,莫霍面突变幅度可达15 km左右。以上特征表明,在青藏高原NE向扩展的构造背景下,柴达木盆地西部地壳缩短显著,并逐渐增厚,东部则仍保持了与稳定克拉通盆地相似的特征,地壳厚度变化微弱。阿尔金断裂带深切走滑引发的壳幔混合作用,可能是促进柴达木盆地西部缩短增厚,进而导致莫霍面东、西部空间差异的决定性因素。 展开更多
关键词 柴达木盆地 莫霍面反演 控制点 阿尔金断裂带
在线阅读 下载PDF
用同位素方法研究额济纳盆地承压含水层地下水的补给 被引量:42
16
作者 陈建生 汪集旸 +4 位作者 赵霞 盛雪芬 顾慰祖 陈亮 苏治国 《地质论评》 CAS CSCD 北大核心 2004年第6期649-658,共10页
本文通过环境同位素、温度、电导率和人工示踪等方法研究了黑河下游古日乃和额济纳盆地深部承压水的补给源 ,初步揭示了额济纳盆地承压水来自于祁连山的降水 ,是部分祁连山西端雪水直接渗入山前的深大断裂 ,在玉门宽滩山一带注入与之相... 本文通过环境同位素、温度、电导率和人工示踪等方法研究了黑河下游古日乃和额济纳盆地深部承压水的补给源 ,初步揭示了额济纳盆地承压水来自于祁连山的降水 ,是部分祁连山西端雪水直接渗入山前的深大断裂 ,在玉门宽滩山一带注入与之相交的阿尔金断裂 ,然后继续向东补给至巴丹吉林沙漠 ,并顺着古日乃断层补给到额济纳盆地。通过蒸发量计算得到的补给量为 5× 10 8m3/a。黑河流域承压水中的 T(氚 )为 17.8~ 0 .1TU ,地下水的年龄与取样孔的位置有关 ,靠近强渗漏带附近的地下水的年龄只有 2 0~ 30 a。古日乃、拐子湖的湖泊、泉、沼泽等消失的主要原因是由于 5 0 a来温度升高、蒸发量增加和下游抽水量增大的原因。该项研究对于重新认识额济纳盆地、古日乃、巴丹吉林沙漠的地下水补给与黑河下游水资源调度。 展开更多
关键词 额济纳盆地 补给 承压含水层 同位素 地下水 阿尔金断裂 巴丹吉林沙漠 祁连山 下游 雪水
在线阅读 下载PDF
青海茫崖—新疆若羌地震探测剖面及其深部构造的研究 被引量:26
17
作者 姜枚 许志琴 +5 位作者 薛光琦 史大年 Gerard Wittlinger Georges Poupinet 董英君 张春贺 《地质学报》 EI CAS CSCD 北大核心 1999年第2期153-161,共9页
穿越NE向阿尔金断裂带,首次进行天然地震探测获取了大量远震与近震资料。对数据进行了层析分析、接收函数和震源定位的研究。提供了阿尔金断裂深部构造的新资料。地震层析资料表明,软流圈的大致深度在100 km、地壳各部位的速度特征有较... 穿越NE向阿尔金断裂带,首次进行天然地震探测获取了大量远震与近震资料。对数据进行了层析分析、接收函数和震源定位的研究。提供了阿尔金断裂深部构造的新资料。地震层析资料表明,软流圈的大致深度在100 km、地壳各部位的速度特征有较大差异,推断南缘断裂产状较陡。沿此断裂出现的幔源物质,在层析图象上呈低速体。北缘的断裂带属高速带,但深部则为相对的低速体。接收函数的结果显示北缘断裂带在浅部产状缓。北缘断裂带在深部应与南缘断裂相会,可能正是塔里木地块的地壳向柴达木地块下部(向南东)插入的表现。可以认为,塔里木地块在岩石圈深部进入了青藏高原的下部,而阿尔金断裂带控制着青藏高原地块向北挤出。 展开更多
关键词 阿尔金断裂 地震层析 新模型 地震探测 深部构造
在线阅读 下载PDF
阿尔金断裂带8Ma左右的快速走滑及其地质意义 被引量:97
18
作者 陈正乐 万景林 +2 位作者 王小凤 陈宣华 潘锦华 《地球学报》 EI CAS CSCD 北大核心 2002年第4期295-300,共6页
阿尔金断裂带的走滑变形历史与青藏高原的抬升、变形密切相关。阿尔金断裂中段旁侧岩体中磷灰石的裂变径迹测试年龄结果集中在 8Ma±。区域资料显示 ,沿阿尔金主断裂带旁侧普遍存在 8Ma±的磷灰石裂变径迹年龄。为此推测 ,阿尔... 阿尔金断裂带的走滑变形历史与青藏高原的抬升、变形密切相关。阿尔金断裂中段旁侧岩体中磷灰石的裂变径迹测试年龄结果集中在 8Ma±。区域资料显示 ,沿阿尔金主断裂带旁侧普遍存在 8Ma±的磷灰石裂变径迹年龄。为此推测 ,阿尔金断裂带在 8Ma±经历了一期快速的走滑变形事件。结合青藏高原抬升、变形研究资料 ,表明 8Ma±是青藏高原抬升。 展开更多
关键词 阿尔金断裂带 快速走滑 快速抬升 青藏高原 变形 构造事件
在线阅读 下载PDF
阿尔金断裂带地壳和上地幔结构的P波层析成像 被引量:26
19
作者 史大年 姜枚 +5 位作者 马开义 薛光琦 董英君 G.Poupinet G.Wittlinger G.Herauel 《地球物理学报》 SCIE EI CAS CSCD 北大核心 1999年第3期341-350,共10页
阿尔金断裂是青藏高原西北边缘最主要的断裂.天然地震P波层析成像结果揭示了阿尔金断裂(严格地说这里指阿尔金断裂中部,下同)为一条宽约40km左右的低速带,并以比较直立的产状向下延伸至150km左右深度.结果同时显示塔里木岩石圈曾... 阿尔金断裂是青藏高原西北边缘最主要的断裂.天然地震P波层析成像结果揭示了阿尔金断裂(严格地说这里指阿尔金断裂中部,下同)为一条宽约40km左右的低速带,并以比较直立的产状向下延伸至150km左右深度.结果同时显示塔里木岩石圈曾经挤入到柴达木盆地下面,并受到后来发育起来的阿尔金断裂的切割.本次研究结果支持青藏高原中北部上地幔热物质参与了支撑高原高海拔地形的重力均衡作用的假设。 展开更多
关键词 阿尔金断裂带 地壳 地幔结构 远震层析成像 断层
在线阅读 下载PDF
2008年于田M_S 7.3地震地表破裂带特征及其构造属性讨论 被引量:91
20
作者 徐锡伟 谭锡斌 +4 位作者 吴国栋 陈建波 沈军 方伟 宋和平 《地震地质》 EI CSCD 北大核心 2011年第2期462-471,共10页
新疆于田MS7.3地震发生在西昆仑块体与昆仑-柴达木-祁连块体之间的阿尔金断裂西南端NE向张剪切段邻近区域,也是阿尔金断裂、康西瓦断裂和昆仑断裂带西端玛尔盖茶卡断裂等交会部位,对理解青藏高原的变形及其动力学演化过程具有十分重要... 新疆于田MS7.3地震发生在西昆仑块体与昆仑-柴达木-祁连块体之间的阿尔金断裂西南端NE向张剪切段邻近区域,也是阿尔金断裂、康西瓦断裂和昆仑断裂带西端玛尔盖茶卡断裂等交会部位,对理解青藏高原的变形及其动力学演化过程具有十分重要的作用。高分辨率卫星影像解译和野外考察表明,于田地震在阿什库勒火山群南部玉龙喀什河源头近SN向雪山西麓断裂上形成了由不同走向、不同滑动性质的地表破裂组合而成的地震地表破裂带,整体呈NS—NNE向展布,全长约31km。在地表破裂带测量到的最大左旋走滑位移1.8m,最大垂直位移约2.0m,发震断层应归属到阿尔金断裂西南尾端的张性区构造,符合昆仑-柴达木-祁连块体与西昆仑块体向东滑移在其与西昆仑块体之间的张剪切边界力学性质,显示出昆仑-柴达木-祁连块体存在向东滑移的现象。 展开更多
关键词 于田MS7.3地震 地震地表破裂带 同震位移 康西瓦断裂 阿尔金断裂
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部