We propose a novel energy dissipative method for the Allen–Cahn equation on nonuniform grids.For spatial discretization,the classical central difference method is utilized,while the average vector field method is app...We propose a novel energy dissipative method for the Allen–Cahn equation on nonuniform grids.For spatial discretization,the classical central difference method is utilized,while the average vector field method is applied for time discretization.Compared with the average vector field method on the uniform mesh,the proposed method can involve fewer grid points and achieve better numerical performance over long time simulation.This is due to the moving mesh method,which can concentrate the grid points more densely where the solution changes drastically.Numerical experiments are provided to illustrate the advantages of the proposed concrete adaptive energy dissipative scheme under large time and space steps over a long time.展开更多
Fractional-in-space Allen-Cahn equation containing a very strong nonlinear source term and small perturbation shows metastability and a quartic double well potential.Using a finite volume unstructured triangular mesh ...Fractional-in-space Allen-Cahn equation containing a very strong nonlinear source term and small perturbation shows metastability and a quartic double well potential.Using a finite volume unstructured triangular mesh method, the present paper solves the twodimensional fractional-in-space Allen-Cahn equation with homogeneous Neumann boundary condition on different irregular domains. The efficiency of the method is presented through numerical computation of the two-dimensional fractional-in-space Allen-Cahn equation on different domains.展开更多
基金the National Key R&D Program of China(Grant No.2020YFA0709800)the National Natural Science Foundation of China(Grant Nos.11901577,11971481,12071481,and 12001539)+3 种基金the Natural Science Foundation of Hunan,China(Grant Nos.S2017JJQNJJ0764 and 2020JJ5652)the fund from Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering(Grant No.2018MMAEZD004)the Basic Research Foundation of National Numerical Wind Tunnel Project,China(Grant No.NNW2018-ZT4A08)the Research Fund of National University of Defense Technology(Grant No.ZK19-37)。
文摘We propose a novel energy dissipative method for the Allen–Cahn equation on nonuniform grids.For spatial discretization,the classical central difference method is utilized,while the average vector field method is applied for time discretization.Compared with the average vector field method on the uniform mesh,the proposed method can involve fewer grid points and achieve better numerical performance over long time simulation.This is due to the moving mesh method,which can concentrate the grid points more densely where the solution changes drastically.Numerical experiments are provided to illustrate the advantages of the proposed concrete adaptive energy dissipative scheme under large time and space steps over a long time.
基金Supported by Youth Foundation of Nanchang Institute of Technology(No.2012KJ025)the Science and Technology Project of Jiangxi Provincial Department Education(No.GJJ13743)~~
基金The National Natural Science Foundation of China(11526094)the China Postdoctoral Science Foundation(2015M582739)+2 种基金the Graduate Student Research Innovation Program of Xinjiang Municipality(XJGRI2016006)the Natural Science Foundation of Fujian Province(2016J05007)the Excellent Doctor Innovation Program of Xinjiang University(XJUBSCX-2016007)
基金Supported by the National Natural Science Foundation of China(11105040,61773153)Supported by the Foundation of Henan Educational Committee(18B110003,15A110015)+1 种基金Supported by the Excellent Young Scientific Talents Cultivation Foundation of Henan University(yqpy20140037)Supported by the Science and Technology Program of Henan Province(162300410061)
文摘Fractional-in-space Allen-Cahn equation containing a very strong nonlinear source term and small perturbation shows metastability and a quartic double well potential.Using a finite volume unstructured triangular mesh method, the present paper solves the twodimensional fractional-in-space Allen-Cahn equation with homogeneous Neumann boundary condition on different irregular domains. The efficiency of the method is presented through numerical computation of the two-dimensional fractional-in-space Allen-Cahn equation on different domains.