The robust stability test of time-delay systems with interval parameters can be concluded into the robust stability of the interval quasipolynomials. It has been revealed that the robust stability of the quasipolynomi...The robust stability test of time-delay systems with interval parameters can be concluded into the robust stability of the interval quasipolynomials. It has been revealed that the robust stability of the quasipolynomials depends on that of their edge polynomials. This paper transforms the interval quasipolynomials into two-dimensional (2-D) interval polynomials (2-D s-z hybrid polynomials), proves that the robust stability of interval 2-D polynomials are sufficient for the stability of given quasipolynomials. Thus, the stability test of interval quasipolynomials can be completed in 2-D s-z domain instead of classical 1-D s domain. The 2-D s-z hybrid polynomials should have different forms under the time delay properties of given quasipolynomials. The stability test proposed by the paper constructs an edge test set from Kharitonov vertex polynomials to reduce the number of testing edge polynomials. The 2-D algebraic tests are provided for the stability test of vertex 2-D polynomials and edge 2-D polynomials family. To verify the results of the paper to be correct and valid, the simulations based on proposed results and comparison with other presented results are given.展开更多
The investigation of novel signal processing tools is one of the hottest research topics in modern signal processing community. Among them, the algebraic and geometric signal processing methods are the most powerful t...The investigation of novel signal processing tools is one of the hottest research topics in modern signal processing community. Among them, the algebraic and geometric signal processing methods are the most powerful tools for the representation of the classical signal processing method. In this paper, we provide an overview of recent contributions to the algebraic and geometric signal processing. Specifically, the paper focuses on the mathematical structures behind the signal processing by emphasizing the algebraic and geometric structure of signal processing. The two major topics are discussed. First, the classical signal processing concepts are related to the algebraic structures, and the recent results associated with the algebraic signal processing theory are introduced. Second, the recent progress of the geometric signal and information processing representations associated with the geometric structure are discussed. From these discussions, it is concluded that the research on the algebraic and geometric structure of signal processing can help the researchers to understand the signal processing tools deeply, and also help us to find novel signal processing methods in signal processing community. Its practical applications are expected to grow significantly in years to come, given that the algebraic and geometric structure of signal processing offer many advantages over the traditional signal processing.展开更多
In this paper, a parallel simulation algorithm for the control problem in differential algebraic system is presented. The error of the algorithm is estimated. The stability analysis is made for a model problem and the...In this paper, a parallel simulation algorithm for the control problem in differential algebraic system is presented. The error of the algorithm is estimated. The stability analysis is made for a model problem and the stability region is given. The numerical example demonstrates that the method is efficient.展开更多
A class of parallel Rosenbrock methods for differential algebraic equations are presented in this paper. The local truncation errors are defined and the order conditions are established by using the DA-trees and DA-se...A class of parallel Rosenbrock methods for differential algebraic equations are presented in this paper. The local truncation errors are defined and the order conditions are established by using the DA-trees and DA-series. The paper also deals with the convergence of the parallel Rosenbrock methods for h -> 0 and states the bounds for the global errors of the methods. Some particular methods are obtained by solving the order equations and a numerical example is given, from which the theoretical orders are actually observed.展开更多
A series of sufficient and necessary conditions for the algebraic stability of multistepRunge-Kutta methods is obtained, most of which can be regarded as extension of the relevant results available for Runge-Kutta met...A series of sufficient and necessary conditions for the algebraic stability of multistepRunge-Kutta methods is obtained, most of which can be regarded as extension of the relevant results available for Runge-Kutta methods, especially, for Radau Ⅰ A, Radau Ⅱ A and Gaussian Runge-Kutta methods.展开更多
A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decou...A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decoupled input-output representations of HLLV were derived, rendering three decoupled second-order systems, i.e., pitch, yaw and roll channels. Based on a new type of numerical differentiator, a differential algebraic observer (DAO) was proposed for estimating the system states and the generalized disturbances, including various disturbances and additive fault torques. Driven by DAOs, three improved proportional-integral- differential (PID) controllers with disturbance compensation were designed for pitch, yaw and roll control. All signals in the closed-loop system were guaranteed to be ultimately uniformly bounded by utilization of Lyapunov's indirect method. The convincing numerical simulations indicate that the proposed control scheme is successful in achieving high performance in the presence of parametric perturbations, external disturbances, noisy corruptions, and actuator faults.展开更多
In this paper, a real-time computation method for the control problems in differential-algebraic systems is presented. The errors of the method are estimated, and the relation between the sampling stepsize and the con...In this paper, a real-time computation method for the control problems in differential-algebraic systems is presented. The errors of the method are estimated, and the relation between the sampling stepsize and the controlled errors is analyzed. The stability analysis is done for a model problem, and the stability region is ploted which gives the range of the sampling stepsizes with which the stability of control process is guaranteed.展开更多
The modifiedλ-differential Lie-Yamaguti algebras are considered,in which a modifiedλ-differential Lie-Yamaguti algebra consisting of a Lie-Yamaguti algebra and a modifiedλ-differential operator.First we introduce t...The modifiedλ-differential Lie-Yamaguti algebras are considered,in which a modifiedλ-differential Lie-Yamaguti algebra consisting of a Lie-Yamaguti algebra and a modifiedλ-differential operator.First we introduce the representation of modifiedλ-differential Lie-Yamaguti algebras.Furthermore,we establish the cohomology of a modifiedλ-differential Lie-Yamaguti algebra with coefficients in a representation.Finally,we investigate the one-parameter formal deformations and Abelian extensions of modifiedλ-differential Lie-Yamaguti algebras using the second cohomology group.展开更多
随着大量的软件演化过程模型被软件演化过程元模型建模产生,如何验证过程模型的正确性,是摆在人们面前的一个重要任务.针对软件演化过程元模型,引入进程代数ACP(algebra of communicating processes)对其扩展,提出软件演化过程元模型代...随着大量的软件演化过程模型被软件演化过程元模型建模产生,如何验证过程模型的正确性,是摆在人们面前的一个重要任务.针对软件演化过程元模型,引入进程代数ACP(algebra of communicating processes)对其扩展,提出软件演化过程元模型代数,使用进程项指定软件演化过程模型的代数语义,在进程代数的统一框架下,基于等式推理验证软件演化过程模型的行为,使行为验证方式从模型推导变为代数推导.这种方法充分结合了Petri网和ACP的长处,可以有效地支持软件演化过程的形式验证.展开更多
将现有入侵容忍、自毁技术与自律计算相结合,提出了一种基于SM-PEPA(semi-Markov performance evaluation process algebra)的关键任务系统自律可信性模型以支持形式化分析和推理.该模型具有一定程度的自管理能力,采用分级处理的方式应...将现有入侵容忍、自毁技术与自律计算相结合,提出了一种基于SM-PEPA(semi-Markov performance evaluation process algebra)的关键任务系统自律可信性模型以支持形式化分析和推理.该模型具有一定程度的自管理能力,采用分级处理的方式应对各种程度的可信性威胁,满足了关键任务系统对可信性的特殊需求.在此基础上,从稳态概率角度提出了一种自律可信性度量方法.最后,结合具体实例对模型参数对自律可信性的影响进行了初步分析.实验结果表明,增大关键任务系统可信性威胁检测率和自恢复成功率,可在较大范围内提高系统的自律可信特性.展开更多
This paper proposes second-order consensus protocols with time-delays and gives the measure of the robustness of the protocols to the time-delay existing in the network of agents with second-order dynamics. By employi...This paper proposes second-order consensus protocols with time-delays and gives the measure of the robustness of the protocols to the time-delay existing in the network of agents with second-order dynamics. By employing a frequency domain method, it is proven that the information states and their time derivatives of all the agents in the network achieve consensus asymptotically, respectively, for appropriate communication timedelay if the topology of weighted network is connected. Particularly, a tight upper bound on the communication time-delay that can be tolerated in the dynamic network is found. The consensus protocols are distributed in the sense that each agent only needs information from its neighboring agents, which reduces the complexity of connections between neighboring agents significantly. Numerical simulation results are provided to demonstrate the effectiveness and the sharpness of the theoretical results for second-order consensus in networks in the presence of communication time-delays.展开更多
To analyze the behavioral model of the command,control,communication,computer,intelligence,surveillance,reconnaissance(C4ISR)architecture,we propose an executable modeling and analyzing approach to it.First,the meta c...To analyze the behavioral model of the command,control,communication,computer,intelligence,surveillance,reconnaissance(C4ISR)architecture,we propose an executable modeling and analyzing approach to it.First,the meta concept model of the C4ISR architecture is introduced.According to the meta concept model,we construct the executable meta models of the C4ISR architecture by extending the meta models of fUML.Then,we define the concrete syntax and executable activity algebra(EAA)semantics for executable models.The semantics functions are introduced to translating the syntax description of executable models into the item of EAA.To support the execution of models,we propose the executable rules which are the structural operational semantics of EAA.Finally,an area air defense of the C4ISR system is used to illustrate the feasibility of the approach.展开更多
The internal turbulent flow in conical diffuser is a very complicated adverse pressure gradient flow.DLR k-ε turbulence model was adopted to study it.The every terms of the Laplace operator in DLR k-ε turbulence mod...The internal turbulent flow in conical diffuser is a very complicated adverse pressure gradient flow.DLR k-ε turbulence model was adopted to study it.The every terms of the Laplace operator in DLR k-ε turbulence model and pressure Poisson equation were discretized by upwind difference scheme.A new full implicit difference scheme of 5-point was constructed by using finite volume method and finite difference method.A large sparse matrix with five diagonals was formed and was stored by three arrays of one dimension in a compressed mode.General iterative methods do not work wel1 with large sparse matrix.With algebraic multigrid method(AMG),linear algebraic system of equations was solved and the precision was set at 10-6.The computation results were compared with the experimental results.The results show that the computation results have a good agreement with the experiment data.The precision of computational results and numerical simulation efficiency are greatly improved.展开更多
In this paper the method of design of kinematical and dynamical equations of mechanical systems, applied to numerical ealization, is proposed. The corresponding difference equations, which are obtained, give a guarant...In this paper the method of design of kinematical and dynamical equations of mechanical systems, applied to numerical ealization, is proposed. The corresponding difference equations, which are obtained, give a guarantee of computations with a given precision. The equations of programmed constraints and those of constraint perturbations are defined. The stability of the programmed manifold for numerical solutions of the kinematical and dynamical equations is obtained by corresponding construction of the constraint perturbation equations. The dynamical equations of system with programmed constraints are set up in the form of Lagrange’s equations in generalized coordinates. Certain inverse problems of rigid body dynamics are examined.展开更多
Considering the design problem of non-fragile decentralized H∞ controller with gain variations, the dynamic feedback controller by measurement feedback for uncertain linear systems is constructed and studied. The par...Considering the design problem of non-fragile decentralized H∞ controller with gain variations, the dynamic feedback controller by measurement feedback for uncertain linear systems is constructed and studied. The parameter uncertainties are considered to be unknown but norm bounded. The design procedures are investigated in terms of positive definite solutions to modify algebraic Riccati inequalities. Using information exchange among local controllers, the designed non-fragile decentralized H∞ controllers guarantee that the uncertain closed-loop linear systems are stable and with H∞ -norm bound on disturbance attenuation. A sufficient condition that there are such non-fragile H∞ controllers is obtained by algebraic Riccati inequalities. The approaches to solve modified algebraic Riccati inequalities are carried out preliminarily. Finally, a numerical example to show the validity of the proposed approach is given.展开更多
We are engaged in solving two difficult problems in adaptive control of the large-scale time-variant aerospace system. One is parameter identification of time-variant continuous-time state-space modei; the other is ho...We are engaged in solving two difficult problems in adaptive control of the large-scale time-variant aerospace system. One is parameter identification of time-variant continuous-time state-space modei; the other is how to solve algebraic Riccati equation (ARE) of large order efficiently. In our approach, two neural networks are employed to independently solve both the system identification problem and the ARE associated with the optimal control problem. Thus the identification and the control computation are combined in closed-loop, adaptive, real-time control system . The advantage of this approach is that the neural networks converge to their solutions very quickly and simultaneously.展开更多
It has long been realized that the problem of radar imaging is a special case of image reconstruction in which the data are incomplete and noisy. In other fields, iterative reconstruction algorithms have been used suc...It has long been realized that the problem of radar imaging is a special case of image reconstruction in which the data are incomplete and noisy. In other fields, iterative reconstruction algorithms have been used successfully to improve the image quality. This paper studies the application of iterative algorithms in radar imaging. A discrete model is first derived, and the iterative algorithms are then adapted to radar imaging. Although such algorithms are usually time consuming, this paper shows that, if the algorithms are appropriately simplified, it is possible to realize them even in real time. The efficiency of iterative algorithms is shown through computer simulations.展开更多
We consider the robust H 2/H ∞ filtering problem for linear perturbed systems with steadystate error variance assignment. The generalized inverse technique of matrix is introduced, and a new algorithm is developed....We consider the robust H 2/H ∞ filtering problem for linear perturbed systems with steadystate error variance assignment. The generalized inverse technique of matrix is introduced, and a new algorithm is developed. After two Riccati equations are solved, the filter can be obtained directly, and the following three performance requirements are simultaneously satisfied: The filtering process is asymptotically stable; the steadystate variance of the estimation error of each state is not more than the individual prespecified upper bound; the transfer function from exogenous noise inputs to error state outputs meets the prespecified H ∞ norm upper bound constraint. A numerical example is provided to demonstrate the flexibility of the proposed design approach.展开更多
基金This project was supported by the National Science Foundation of China (60572093).
文摘The robust stability test of time-delay systems with interval parameters can be concluded into the robust stability of the interval quasipolynomials. It has been revealed that the robust stability of the quasipolynomials depends on that of their edge polynomials. This paper transforms the interval quasipolynomials into two-dimensional (2-D) interval polynomials (2-D s-z hybrid polynomials), proves that the robust stability of interval 2-D polynomials are sufficient for the stability of given quasipolynomials. Thus, the stability test of interval quasipolynomials can be completed in 2-D s-z domain instead of classical 1-D s domain. The 2-D s-z hybrid polynomials should have different forms under the time delay properties of given quasipolynomials. The stability test proposed by the paper constructs an edge test set from Kharitonov vertex polynomials to reduce the number of testing edge polynomials. The 2-D algebraic tests are provided for the stability test of vertex 2-D polynomials and edge 2-D polynomials family. To verify the results of the paper to be correct and valid, the simulations based on proposed results and comparison with other presented results are given.
基金Sponsored by Program for Changjiang Scholars and Innovative Research Team in University ( IRT1005 )the National Natural Science Founda-tions of China ( 61171195 and 61179031)Program for New Century Excellent Talents in University ( NCET-12-0042)
文摘The investigation of novel signal processing tools is one of the hottest research topics in modern signal processing community. Among them, the algebraic and geometric signal processing methods are the most powerful tools for the representation of the classical signal processing method. In this paper, we provide an overview of recent contributions to the algebraic and geometric signal processing. Specifically, the paper focuses on the mathematical structures behind the signal processing by emphasizing the algebraic and geometric structure of signal processing. The two major topics are discussed. First, the classical signal processing concepts are related to the algebraic structures, and the recent results associated with the algebraic signal processing theory are introduced. Second, the recent progress of the geometric signal and information processing representations associated with the geometric structure are discussed. From these discussions, it is concluded that the research on the algebraic and geometric structure of signal processing can help the researchers to understand the signal processing tools deeply, and also help us to find novel signal processing methods in signal processing community. Its practical applications are expected to grow significantly in years to come, given that the algebraic and geometric structure of signal processing offer many advantages over the traditional signal processing.
文摘In this paper, a parallel simulation algorithm for the control problem in differential algebraic system is presented. The error of the algorithm is estimated. The stability analysis is made for a model problem and the stability region is given. The numerical example demonstrates that the method is efficient.
基金the National Natural Science Foundation of China (No. 19871080)
文摘A class of parallel Rosenbrock methods for differential algebraic equations are presented in this paper. The local truncation errors are defined and the order conditions are established by using the DA-trees and DA-series. The paper also deals with the convergence of the parallel Rosenbrock methods for h -> 0 and states the bounds for the global errors of the methods. Some particular methods are obtained by solving the order equations and a numerical example is given, from which the theoretical orders are actually observed.
文摘A series of sufficient and necessary conditions for the algebraic stability of multistepRunge-Kutta methods is obtained, most of which can be regarded as extension of the relevant results available for Runge-Kutta methods, especially, for Radau Ⅰ A, Radau Ⅱ A and Gaussian Runge-Kutta methods.
基金Foundation item: Project(2012M521538) supported by China Postdoctoral Science Foundation Project suppolted by Postdoctoral Science Foundation of Central South University
文摘A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decoupled input-output representations of HLLV were derived, rendering three decoupled second-order systems, i.e., pitch, yaw and roll channels. Based on a new type of numerical differentiator, a differential algebraic observer (DAO) was proposed for estimating the system states and the generalized disturbances, including various disturbances and additive fault torques. Driven by DAOs, three improved proportional-integral- differential (PID) controllers with disturbance compensation were designed for pitch, yaw and roll control. All signals in the closed-loop system were guaranteed to be ultimately uniformly bounded by utilization of Lyapunov's indirect method. The convincing numerical simulations indicate that the proposed control scheme is successful in achieving high performance in the presence of parametric perturbations, external disturbances, noisy corruptions, and actuator faults.
文摘In this paper, a real-time computation method for the control problems in differential-algebraic systems is presented. The errors of the method are estimated, and the relation between the sampling stepsize and the controlled errors is analyzed. The stability analysis is done for a model problem, and the stability region is ploted which gives the range of the sampling stepsizes with which the stability of control process is guaranteed.
基金National Natural Science Foundation of China(12161013)Research Projects of Guizhou University of Commerce in 2024。
文摘The modifiedλ-differential Lie-Yamaguti algebras are considered,in which a modifiedλ-differential Lie-Yamaguti algebra consisting of a Lie-Yamaguti algebra and a modifiedλ-differential operator.First we introduce the representation of modifiedλ-differential Lie-Yamaguti algebras.Furthermore,we establish the cohomology of a modifiedλ-differential Lie-Yamaguti algebra with coefficients in a representation.Finally,we investigate the one-parameter formal deformations and Abelian extensions of modifiedλ-differential Lie-Yamaguti algebras using the second cohomology group.
文摘随着大量的软件演化过程模型被软件演化过程元模型建模产生,如何验证过程模型的正确性,是摆在人们面前的一个重要任务.针对软件演化过程元模型,引入进程代数ACP(algebra of communicating processes)对其扩展,提出软件演化过程元模型代数,使用进程项指定软件演化过程模型的代数语义,在进程代数的统一框架下,基于等式推理验证软件演化过程模型的行为,使行为验证方式从模型推导变为代数推导.这种方法充分结合了Petri网和ACP的长处,可以有效地支持软件演化过程的形式验证.
文摘将现有入侵容忍、自毁技术与自律计算相结合,提出了一种基于SM-PEPA(semi-Markov performance evaluation process algebra)的关键任务系统自律可信性模型以支持形式化分析和推理.该模型具有一定程度的自管理能力,采用分级处理的方式应对各种程度的可信性威胁,满足了关键任务系统对可信性的特殊需求.在此基础上,从稳态概率角度提出了一种自律可信性度量方法.最后,结合具体实例对模型参数对自律可信性的影响进行了初步分析.实验结果表明,增大关键任务系统可信性威胁检测率和自恢复成功率,可在较大范围内提高系统的自律可信特性.
基金supported by the National Natural Science Foundation of China (6057408860274014)
文摘This paper proposes second-order consensus protocols with time-delays and gives the measure of the robustness of the protocols to the time-delay existing in the network of agents with second-order dynamics. By employing a frequency domain method, it is proven that the information states and their time derivatives of all the agents in the network achieve consensus asymptotically, respectively, for appropriate communication timedelay if the topology of weighted network is connected. Particularly, a tight upper bound on the communication time-delay that can be tolerated in the dynamic network is found. The consensus protocols are distributed in the sense that each agent only needs information from its neighboring agents, which reduces the complexity of connections between neighboring agents significantly. Numerical simulation results are provided to demonstrate the effectiveness and the sharpness of the theoretical results for second-order consensus in networks in the presence of communication time-delays.
文摘To analyze the behavioral model of the command,control,communication,computer,intelligence,surveillance,reconnaissance(C4ISR)architecture,we propose an executable modeling and analyzing approach to it.First,the meta concept model of the C4ISR architecture is introduced.According to the meta concept model,we construct the executable meta models of the C4ISR architecture by extending the meta models of fUML.Then,we define the concrete syntax and executable activity algebra(EAA)semantics for executable models.The semantics functions are introduced to translating the syntax description of executable models into the item of EAA.To support the execution of models,we propose the executable rules which are the structural operational semantics of EAA.Finally,an area air defense of the C4ISR system is used to illustrate the feasibility of the approach.
基金Projects(59375211,10771178,10676031) supported by the National Natural Science Foundation of ChinaProject(07A068) supported by the Key Project of Hunan Education CommissionProject(2005CB321702) supported by the National Key Basic Research Program of China
文摘The internal turbulent flow in conical diffuser is a very complicated adverse pressure gradient flow.DLR k-ε turbulence model was adopted to study it.The every terms of the Laplace operator in DLR k-ε turbulence model and pressure Poisson equation were discretized by upwind difference scheme.A new full implicit difference scheme of 5-point was constructed by using finite volume method and finite difference method.A large sparse matrix with five diagonals was formed and was stored by three arrays of one dimension in a compressed mode.General iterative methods do not work wel1 with large sparse matrix.With algebraic multigrid method(AMG),linear algebraic system of equations was solved and the precision was set at 10-6.The computation results were compared with the experimental results.The results show that the computation results have a good agreement with the experiment data.The precision of computational results and numerical simulation efficiency are greatly improved.
基金Supported by Russian Fund of Fund amental Investigations(Pr.990101064)and Russian Minister of Educatin
文摘In this paper the method of design of kinematical and dynamical equations of mechanical systems, applied to numerical ealization, is proposed. The corresponding difference equations, which are obtained, give a guarantee of computations with a given precision. The equations of programmed constraints and those of constraint perturbations are defined. The stability of the programmed manifold for numerical solutions of the kinematical and dynamical equations is obtained by corresponding construction of the constraint perturbation equations. The dynamical equations of system with programmed constraints are set up in the form of Lagrange’s equations in generalized coordinates. Certain inverse problems of rigid body dynamics are examined.
基金the National Natural Science Foundation of China (60674019).
文摘Considering the design problem of non-fragile decentralized H∞ controller with gain variations, the dynamic feedback controller by measurement feedback for uncertain linear systems is constructed and studied. The parameter uncertainties are considered to be unknown but norm bounded. The design procedures are investigated in terms of positive definite solutions to modify algebraic Riccati inequalities. Using information exchange among local controllers, the designed non-fragile decentralized H∞ controllers guarantee that the uncertain closed-loop linear systems are stable and with H∞ -norm bound on disturbance attenuation. A sufficient condition that there are such non-fragile H∞ controllers is obtained by algebraic Riccati inequalities. The approaches to solve modified algebraic Riccati inequalities are carried out preliminarily. Finally, a numerical example to show the validity of the proposed approach is given.
文摘We are engaged in solving two difficult problems in adaptive control of the large-scale time-variant aerospace system. One is parameter identification of time-variant continuous-time state-space modei; the other is how to solve algebraic Riccati equation (ARE) of large order efficiently. In our approach, two neural networks are employed to independently solve both the system identification problem and the ARE associated with the optimal control problem. Thus the identification and the control computation are combined in closed-loop, adaptive, real-time control system . The advantage of this approach is that the neural networks converge to their solutions very quickly and simultaneously.
文摘It has long been realized that the problem of radar imaging is a special case of image reconstruction in which the data are incomplete and noisy. In other fields, iterative reconstruction algorithms have been used successfully to improve the image quality. This paper studies the application of iterative algorithms in radar imaging. A discrete model is first derived, and the iterative algorithms are then adapted to radar imaging. Although such algorithms are usually time consuming, this paper shows that, if the algorithms are appropriately simplified, it is possible to realize them even in real time. The efficiency of iterative algorithms is shown through computer simulations.
文摘We consider the robust H 2/H ∞ filtering problem for linear perturbed systems with steadystate error variance assignment. The generalized inverse technique of matrix is introduced, and a new algorithm is developed. After two Riccati equations are solved, the filter can be obtained directly, and the following three performance requirements are simultaneously satisfied: The filtering process is asymptotically stable; the steadystate variance of the estimation error of each state is not more than the individual prespecified upper bound; the transfer function from exogenous noise inputs to error state outputs meets the prespecified H ∞ norm upper bound constraint. A numerical example is provided to demonstrate the flexibility of the proposed design approach.