期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
不平衡样本下基于迁移学习-AlexNet的输电线路故障辨识方法 被引量:28
1
作者 王建 吴昊 +3 位作者 张博 南东亮 欧阳金鑫 熊小伏 《电力系统自动化》 EI CSCD 北大核心 2022年第22期182-191,共10页
输电线路不同故障类型和故障原因的故障样本集具有类不平衡性,为基于图像深度学习的故障分类辨识带来挑战。文中提出类不平衡样本下基于迁移学习-AlexNet神经网络的输电线路故障辨识方法。首先,统计分析了输电线路故障的特征与概率分布... 输电线路不同故障类型和故障原因的故障样本集具有类不平衡性,为基于图像深度学习的故障分类辨识带来挑战。文中提出类不平衡样本下基于迁移学习-AlexNet神经网络的输电线路故障辨识方法。首先,统计分析了输电线路故障的特征与概率分布,使用MATLAB/Simulink仿真产生了符合实际情况的不平衡故障样本集。然后,以故障暂态波形图像为输入集,采用迁移学习-AlexNet神经网络构建故障分类器,降低了故障特征提取的复杂性。算例测试结果表明,现有按类平衡故障样本集开展故障辨识的方法,分类准确率偏于乐观,即使采用抽样法也无法准确识别类不平衡样本中的小样本故障类型;而所提方法可以很好地应对类不平衡故障样本集,相比于经典的卷积神经网络,对故障类型与故障原因的辨识准确率也更高,训练模型用于类似线路的真实故障录波数据也能很好地辨识出故障类型。 展开更多
关键词 输电线路 故障辨识 迁移学习 alexnet神经网络 图像学习 不平衡样本
在线阅读 下载PDF
基于小波AlexNet网络的配电网故障区段定位方法 被引量:24
2
作者 侯思祖 郭威 +1 位作者 王子奇 刘雅婷 《电测与仪表》 北大核心 2022年第3期46-57,共12页
文中提出一种基于深度网络迁移学习的配电网故障区段定位方法。利用小波包变换(WPT)分解配电网各区段的电量信号,将各节点小波包系数按照低频到高频的顺序重新排列获得时频矩阵,通过颜色编码将时频矩阵转成具有图像性质的像素矩阵,像素... 文中提出一种基于深度网络迁移学习的配电网故障区段定位方法。利用小波包变换(WPT)分解配电网各区段的电量信号,将各节点小波包系数按照低频到高频的顺序重新排列获得时频矩阵,通过颜色编码将时频矩阵转成具有图像性质的像素矩阵,像素矩阵囊括了当前系统的工作状况信息,利用迁移学习AlexNet网络,调整网络结构使其适应于配电网故障区段辨识,通过微调的AlexNet网络自主挖掘像素矩阵的故障特征作为预测变量,利用门控循环单元(GRU)、学习向量量化(LVQ)、朴素贝叶斯分类器(NBC)、极限学习机(ELM)、支持向量机(SVM)等模式识别算法进行故障特征分类,从而实现配电网故障区段定位。针对多分支的线缆混合线路进行实验分析,比较5种模式识别算法的分类效果,得到GRU算法准确率可以达到99.92%,证明了该方法不受故障时刻、故障类型和过渡电阻等因素的影响,可满足配电网对故障区段定位准确度和可靠性的需求。 展开更多
关键词 小波包变换 alexnet网络 门控循环单元 时频矩阵 故障区段定位
在线阅读 下载PDF
基于迁移学习和AlexNet的驾驶员行为状态识别方法 被引量:17
3
作者 戎辉 华一丁 +4 位作者 张小俊 龚进峰 唐风敏 郭蓬 何佳 《科学技术与工程》 北大核心 2019年第28期208-216,共9页
为了解决传统基于神经网络算法的驾驶员行为状态识别系统精度过于依赖大量训练样本的问题,提出将迁移学习理论和Alex Net引入到驾驶员行为状态的识别研究中。首先对驾驶员行为特征及状态进行深入分析,对驾驶员7种驾驶状态进行了定义,构... 为了解决传统基于神经网络算法的驾驶员行为状态识别系统精度过于依赖大量训练样本的问题,提出将迁移学习理论和Alex Net引入到驾驶员行为状态的识别研究中。首先对驾驶员行为特征及状态进行深入分析,对驾驶员7种驾驶状态进行了定义,构建了驾驶员状态信息采集系统;然后对基于卷积神经网络的驾驶员状态识别方法研究,建立了驾驶员状态数据集,构建了基于Alex Net卷积神经网络的状态监测系统,通过迁移学习完成了卷积神经网络识别模型。最后通过实验验证了提出的驾驶员状态识别算法对7种驾驶员状态识别的有效性。实验表明:该系统准确率达到97. 8%,且在实验设备中运行速度达到70帧/min,满足较高的准确率要求与实时性要求。 展开更多
关键词 驾驶员状态 迁移学习 alexnet 卷积神经网络
在线阅读 下载PDF
基于改进AlexNet的可变形卷积皮肤病变识别算法 被引量:3
4
作者 李海燕 马艳 +2 位作者 李海江 郭磊 李红松 《北京理工大学学报》 EI CAS CSCD 北大核心 2022年第3期297-303,共7页
为了有效解决类间相似度高、类内差异化大、数据类别不平衡的皮肤病变识别,提出了基于改进AlexNet的可变形卷积网络皮肤病变识别算法.构建改进的AlexNet可变形卷积网络模型,增加采样偏移量,使不同位置的卷积核采样点可根据图像内容自适... 为了有效解决类间相似度高、类内差异化大、数据类别不平衡的皮肤病变识别,提出了基于改进AlexNet的可变形卷积网络皮肤病变识别算法.构建改进的AlexNet可变形卷积网络模型,增加采样偏移量,使不同位置的卷积核采样点可根据图像内容自适应变化,自动调整不同尺度或感受野,提取比标准卷积更精细的特征.使用交叉熵损失函数和焦点损失函数的加权损失函数,削弱易分类样本在训练中所占的权重,使模型专注于相似度高、易错分的样本,解决样本比例不平衡的问题,优化模型的识别率.在HAM10000数据集上进行仿真实验,主客观的实验结果表明,提出的方法在7种皮肤病变上的识别优于现有方法,具有更高的准确性、特异性和鲁棒性. 展开更多
关键词 皮肤病变识别 类别不平衡 改进alexnet网络 可变形卷积
在线阅读 下载PDF
改进的Alexnet模型及在油井示功图分类中的应用 被引量:16
5
作者 段友祥 李钰 +1 位作者 孙歧峰 徐冬胜 《计算机应用与软件》 北大核心 2018年第7期226-230,272,共6页
现在有杆抽油机采油设备仍在原油开采中占据主导地位,示功图采集及分析是检测、预防、解决采油生产过程中各种故障的有效措施和手段。借助人工智能方法进行油井抽油机示功图自动分类识别和故障判断一直是研究的重点。深度学习为示功图... 现在有杆抽油机采油设备仍在原油开采中占据主导地位,示功图采集及分析是检测、预防、解决采油生产过程中各种故障的有效措施和手段。借助人工智能方法进行油井抽油机示功图自动分类识别和故障判断一直是研究的重点。深度学习为示功图识别和解释研究注入了新的活力。主要对卷积神经网络在油井抽油机示功图自动识别中的应用进行研究,提出一种改进的Alexnet模型,实现了示功图的自动识别,并与目前常用的神经网络模型进行了比较。实验表明,改进的Alexnet模型在保证识别准确率高的同时有效降低了训练学习时间,很好地达到了实际应用要求。 展开更多
关键词 示功图 深度学习 卷积神经网络 alexnet
在线阅读 下载PDF
基于AlexNet-SN网络的煤与煤矸石分类方法 被引量:3
6
作者 郑爽 梁云浩 +2 位作者 武俊峰 乔壮 刘付刚 《中国矿业》 2022年第6期79-85,共7页
现有煤矸石分选方法主要依据人工设计特征对煤矸石进行识别,但特征提取过程复杂,准确率也较低。随着人工智能技术的快速发展,智能选矸成为解决煤矸石分拣问题的重要研究方向。为提高煤与煤矸石分类准确率,本文提出了一种基于AlexNet网... 现有煤矸石分选方法主要依据人工设计特征对煤矸石进行识别,但特征提取过程复杂,准确率也较低。随着人工智能技术的快速发展,智能选矸成为解决煤矸石分拣问题的重要研究方向。为提高煤与煤矸石分类准确率,本文提出了一种基于AlexNet网络和风格迁移技术改进的煤矸石分拣方法。选用3×3的卷积核代替原AlexNet网络前几层中较大的卷积核,利用BN层代替LRN层和Dropout,并采用风格迁移数据增强法提高煤与煤矸石数据集的多样性。研究结果表明,与原始的AlexNet网络相比,该方法的准确率提高了1.8%,损失率下降了2.0%。此方法不仅能够满足煤与煤矸石实时检测的要求,而且具有更高的识别精度,能有效应用于煤矸石识别。 展开更多
关键词 alexnet网络 煤矸石 人工智能 分选技术
在线阅读 下载PDF
基于AlexNet卷积神经网络的激光雷达飞机尾涡识别研究 被引量:17
7
作者 潘卫军 段英捷 +2 位作者 张强 吴郑源 刘皓晨 《光电工程》 CAS CSCD 北大核心 2019年第7期123-130,共8页
为解决飞机尾涡威胁后机飞行安全问题,保障空中交通安全,提高机场和空域容量,提出了一种基于AlexNet卷积神经网络模型的算法,实现飞机尾涡的准确识别。结合多普勒激光雷达探测原理和Hallck-Burnham尾涡速度经典模型,构建了AlexNet神经... 为解决飞机尾涡威胁后机飞行安全问题,保障空中交通安全,提高机场和空域容量,提出了一种基于AlexNet卷积神经网络模型的算法,实现飞机尾涡的准确识别。结合多普勒激光雷达探测原理和Hallck-Burnham尾涡速度经典模型,构建了AlexNet神经网络模型提取大气风场中的尾涡速度云图的图像特征,识别飞机尾涡。研究表明,该模型能够准确识别目标空域中的飞机尾涡,网络模型收敛后对尾涡识别的准确率高达91.30%,并具有低虚警率,能有效地实现对飞机尾涡的识别和预警,达到尾涡监测的目的。 展开更多
关键词 尾涡识别 alexnet卷积神经网络 目标识别 多普勒激光雷达
在线阅读 下载PDF
基于改进AlexNet卷积神经网络的人脸表情识别 被引量:30
8
作者 石翠萍 谭聪 +1 位作者 左江 赵可新 《电讯技术》 北大核心 2020年第9期1005-1012,共8页
为了解决传统卷积神经网络用于人脸表情识别准确率不高的问题,提出了一种基于改进深度AlexNet卷积神经网络的表情识别方法。该方法基于AlexNet网络的基本结构,采用单图形处理单元(Graphics Processing Unit,GPU)进行训练,减少了两层卷... 为了解决传统卷积神经网络用于人脸表情识别准确率不高的问题,提出了一种基于改进深度AlexNet卷积神经网络的表情识别方法。该方法基于AlexNet网络的基本结构,采用单图形处理单元(Graphics Processing Unit,GPU)进行训练,减少了两层卷积层和一层全连接层,在每层卷积层后加上批标准化(Batch Normalization,BN)代替原来的局部归一化,并在全连接层后加上Dropout正则化进一步防止过拟合。与AlexNet模型相比,改进的网络结构更简单、复杂度低、参数量少,可以节省大量模型训练时间进行快速预测,且更不易过拟合,同时加快了模型收敛速度,提高了网络泛化能力。在Fer2013数据集以及CK+数据集上进行实验,结果表明,所提方法分别得到了68.85%和97.46%的识别率,较其他人脸表情识别方法的识别率有一定提高。 展开更多
关键词 表情识别 深度学习 alexnet网络 BN算法
在线阅读 下载PDF
基于AlexNet的茶叶嫩芽状态智能识别研究 被引量:15
9
作者 吕军 夏华鹍 +1 位作者 方梦瑞 周礼赞 《黑龙江八一农垦大学学报》 2019年第2期72-78,共7页
为确定合理有效的茶叶嫩芽采摘时间,提出一种基于AlexNet卷积神经网络的茶叶嫩芽状态智能识别方法。首先,建立自然环境下全开面、半开面和未开面三种状态茶叶嫩芽图像集;然后,训练茶叶嫩芽状态AlexNet网络识别模型;最后,利用测试集样本... 为确定合理有效的茶叶嫩芽采摘时间,提出一种基于AlexNet卷积神经网络的茶叶嫩芽状态智能识别方法。首先,建立自然环境下全开面、半开面和未开面三种状态茶叶嫩芽图像集;然后,训练茶叶嫩芽状态AlexNet网络识别模型;最后,利用测试集样本进行模型检测,训练集和测试集中三种状态嫩芽平均识别率分别为97.8%和88%。实验结果表明,该方法能够有效地识别自然环境下茶叶嫩芽状态,为嫩芽智能采摘提供理论依据。 展开更多
关键词 深度学习 alexnet网络 茶叶状态 智能识别
在线阅读 下载PDF
融合迁移学习的AlexNet神经网络不锈钢焊缝缺陷分类 被引量:9
10
作者 陈立潮 闫耀东 +2 位作者 张睿 傅留虎 曹建芳 《智能系统学报》 CSCD 北大核心 2021年第3期537-543,共7页
针对不锈钢焊缝缺陷特征提取存在主观单一性和客观不充分性等问题,提出一种融合迁移学习的AlexNet卷积神经网络模型,用于不锈钢焊缝缺陷的自动分类。首先,由于不锈钢焊缝缺陷数据较为缺乏,通过采用迁移学习对网络前3层冻结,减少网络对... 针对不锈钢焊缝缺陷特征提取存在主观单一性和客观不充分性等问题,提出一种融合迁移学习的AlexNet卷积神经网络模型,用于不锈钢焊缝缺陷的自动分类。首先,由于不锈钢焊缝缺陷数据较为缺乏,通过采用迁移学习对网络前3层冻结,减少网络对输入数据量的要求;对后2层卷积层提取的特征信息批量归一化(batch normalization,BN),以加快网络的收敛速度;并使用带泄露线性整流(leaky rectified linear unit,LeakyReLU)函数对抑制神经元进行激活,从而提高模型的鲁棒性和特征提取能力。结果表明,该模型最终达到了95.12%的准确率,相比原结构识别精度提高了9.8%。验证了改进后方法能够对裂纹、气孔、夹渣、未熔合和未焊透5类不锈钢焊缝缺陷实现高精度分类。相比现有方法,其识别面更广,精度更高,具有一定的工程实践意义。 展开更多
关键词 不锈钢焊缝缺陷分类 卷积神经网络 图像预处理 alexnet模型 迁移学习 数据增强 焊缝数据集 深度学习
在线阅读 下载PDF
基于增强AlexNet的音乐流派识别研究 被引量:4
11
作者 刘万军 孟仁杰 +1 位作者 曲海成 刘腊梅 《智能系统学报》 CSCD 北大核心 2020年第4期750-757,共8页
针对机器学习模型对音乐流派特征识别能力较弱的问题,提出了一种基于深度卷积神经网络的音乐流派识别(DCNN-MGR)模型。该模型首先通过快速傅里叶变换提取音频信息,生成可以输入DCNN的频谱并切割生成频谱切片。然后通过融合带泄露整流(Le... 针对机器学习模型对音乐流派特征识别能力较弱的问题,提出了一种基于深度卷积神经网络的音乐流派识别(DCNN-MGR)模型。该模型首先通过快速傅里叶变换提取音频信息,生成可以输入DCNN的频谱并切割生成频谱切片。然后通过融合带泄露整流(Leaky ReLU)函数、双曲正切(Tanh)函数和Softplus分类器对AlexNet进行增强。其次将生成的频谱切片输入增强的AlexNet进行多批次的训练与验证,提取并学习音乐特征,得到可以有效分辨音乐特征的网络模型。最后使用输出模型进行音乐流派识别测试。实验结果表明,增强的AlexNet在音乐特征识别准确率和网络收敛效果上明显优于AlexNet及其他常用的DCNN、DCNN-MGR模型在音乐流派识别准确率上比其他机器学习模型提升了4%~20%。 展开更多
关键词 音乐流派识别 深度卷积神经网络 机器学习 深度学习 alexnet 音频特征提取 音乐特征识别
在线阅读 下载PDF
基于AlexNet模型和自适应对比度增强的乳腺结节超声图像分类 被引量:18
12
作者 陈思文 刘玉江 +4 位作者 刘冬 苏晨 赵地 钱林学 张佩珩 《计算机科学》 CSCD 北大核心 2019年第B06期146-152,共7页
乳腺癌是女性是最常见的恶性肿瘤之一,其发病率有逐年增高的趋势,严重威胁着患者健康。如何取代传统活体穿刺,快速准确地对乳腺结节进行良恶性判断,近年越来越受到关注。医学研究表明,良恶性结节在边缘处呈现较为显著的差异,因此对边界... 乳腺癌是女性是最常见的恶性肿瘤之一,其发病率有逐年增高的趋势,严重威胁着患者健康。如何取代传统活体穿刺,快速准确地对乳腺结节进行良恶性判断,近年越来越受到关注。医学研究表明,良恶性结节在边缘处呈现较为显著的差异,因此对边界加强处理的算法为判断乳腺结节良恶性的深度学习提供了新思路。文中实验数据库的构建基础得到首都医科大学附属北京友谊医院的支持。在比较5种边界增强算法后对图像进行扩增,并采用在图像分类方面十分出色的AlexNet网络模型。将分别经过线性、非线性对比度拉伸、直方图均衡化、直方图阈值化以及自适应对比度增强算法处理后的数据用于AlexNet模型,比较5种算法对AlexNet模型准确度的影响,得出更适用于乳腺结节超声图像的预处理算法。扩增后的数据集图像总数量超过一万张,其中训练集占80%,验证集与测试集各占10%。最终,通过绘制ROC曲线计算敏感度、特异度、精确度参数,对测试结果进行评估,并得到了较好的测试结果。 展开更多
关键词 乳腺癌 乳腺结节 深度学习 卷积神经网络 alexnet模型 图像预处理 自适应增强对比度算法
在线阅读 下载PDF
基于改进型AlexNet的花生荚果品种识别 被引量:8
13
作者 倪建功 杨昊岩 +1 位作者 李娟 韩仲志 《花生学报》 北大核心 2021年第4期14-22,共9页
花生是我国重要的油料作物,不同品种的花生含油率是不同的,因此需要对不同品种的花生进行分选。传统模式识别的方法需要人工定义各类特征,存在主观判断、浪费人力等问题,实用性较差。针对上述问题,本实验基于卷积神经网络提出一种多品... 花生是我国重要的油料作物,不同品种的花生含油率是不同的,因此需要对不同品种的花生进行分选。传统模式识别的方法需要人工定义各类特征,存在主观判断、浪费人力等问题,实用性较差。针对上述问题,本实验基于卷积神经网络提出一种多品类花生荚果识别模型。该模型基于经典的AlexNet网络模型,通过设置不同尺寸的卷积核提取更丰富的特征,去除局部响应归一化层,修改全连接层神经元连接个数等操作,设计了一种改进型AlexNet,基于改进型AlexNet对13种不同类型的花生荚果进行识别分类。原始AlexNet对13类花生荚果识别的最高准确率为84.27%,平均准确率为83.66%。改进型AlexNet最高准确率为88.76%,平均准确率为87.73%,分别提高了4.49和4.07个百分点。研究结果表明,改进型AlexNet对不同品种花生荚果的识别结果优于原始AlexNet。利用卷积神经网络对花生荚果品种识别具有一定可行性,基本可以推广到实际生产中使用。 展开更多
关键词 花生荚果 品种分类 图像处理 卷积神经网络 alexnet
在线阅读 下载PDF
AlexNet改进及优化方法的研究 被引量:31
14
作者 郭敏钢 宫鹤 《计算机工程与应用》 CSCD 北大核心 2020年第20期124-131,共8页
通过对Normalization、优化器、激活函数三方面对AlexNet卷积神经网络进行了改进及优化。针对LRN(Local Response Normalization)不存在可学习参数,提出了用WN(Weight Normalization)来代替LRN,同时将WN置于所有池化层(Pooling layer)之... 通过对Normalization、优化器、激活函数三方面对AlexNet卷积神经网络进行了改进及优化。针对LRN(Local Response Normalization)不存在可学习参数,提出了用WN(Weight Normalization)来代替LRN,同时将WN置于所有池化层(Pooling layer)之后,提高了AlexNet模型训练的准确率;通过对比分析Adam、RMSProp、Momentum三种优化器在不同学习率(Learning rate)下对AlexNet模型训练的影响,并得出了相应的学习率的优化区间,提高了AlexNet在Optimizer的学习率区间选择上的准确性;针对AlexNet中ReLU激活函数存在的部分权重无法更新以及梯度爆炸问题,提出了ReLU6与Swish的融合分段函数算法,提升了AlexNet模型训练收敛速度以及准确率的同时也缓解了过拟合现象的发生。 展开更多
关键词 alexnet 卷积神经网络(CNN) NORMALIZATION 优化器 激活函数
在线阅读 下载PDF
基于AlexNet网络的MPSK与MQAM类信号的调制识别 被引量:8
15
作者 裴禹豪 曲毅 +1 位作者 李锦明 扆泽江 《激光杂志》 北大核心 2018年第10期75-78,共4页
针对现有的信号调制类型识别算法对信号的先验知识要求比较高,人工选取特征复杂、鲁棒性差等问题,引入卷积神经网络算法,将Alex Net网络运用到对同步前的MPSK和MQAM类信号的调制类型识别上。选取2PSK、4PSK、16QAM、32QAM四种信号的散... 针对现有的信号调制类型识别算法对信号的先验知识要求比较高,人工选取特征复杂、鲁棒性差等问题,引入卷积神经网络算法,将Alex Net网络运用到对同步前的MPSK和MQAM类信号的调制类型识别上。选取2PSK、4PSK、16QAM、32QAM四种信号的散布图特征进行识别。研究结果表明卷积神经网络算法能较好地对未同步的MPSK和MQAM类信号进行调制类型识别,且MPSK类信号的识别率要高于MQAM类信号的识别率。 展开更多
关键词 调制识别 卷积神经网络 alexnet 散布图
在线阅读 下载PDF
基于Alexnet网络的绝缘子自爆无人机巡检技术研究 被引量:19
16
作者 李映国 杨宏 +2 位作者 徐郁 周杰 赵家乐 《智慧电力》 北大核心 2021年第8期104-109,共6页
绝缘子是输电系统中与安全相关的关键部件,绝缘子自爆问题的高效快速识别对电力系统的保护具有重要的意义。随着无人机(UAV)相关产业的不断发展,可以采用无人机技术对输电线路进行巡检拍摄。以此为背景提出了一种基于Alexnet网络的绝缘... 绝缘子是输电系统中与安全相关的关键部件,绝缘子自爆问题的高效快速识别对电力系统的保护具有重要的意义。随着无人机(UAV)相关产业的不断发展,可以采用无人机技术对输电线路进行巡检拍摄。以此为背景提出了一种基于Alexnet网络的绝缘子自爆无人机巡检技术。首先,应用无人机巡检这一先进技术得到绝缘子的清晰实时图片。然后,采用Alexnet网络对绝缘子自爆图片进行学习和识别。与传统的识别方法相比,Alexnet网络模型不但结构上有所加深,对卷积的功能也进行了强化,对无人机巡检过程中拍摄的复杂图像进行识别和检测有很好的效果。 展开更多
关键词 绝缘子自爆 alexnet网络 无人机巡检 识别
在线阅读 下载PDF
采用改进型AlexNet的辐射源目标个体识别方法 被引量:19
17
作者 徐雄 《电讯技术》 北大核心 2018年第6期625-630,共6页
针对辐射源目标精确识别需求,结合以深度学习为代表的机器学习理论技术,提出将改进型AlexNet作为特征提取器,实现目标细微特征提取固化,形成智能化识别网络模型。以广播式自动相关监视(ADS-B)信号为实验对象,在机场实地采集了13个目标的... 针对辐射源目标精确识别需求,结合以深度学习为代表的机器学习理论技术,提出将改进型AlexNet作为特征提取器,实现目标细微特征提取固化,形成智能化识别网络模型。以广播式自动相关监视(ADS-B)信号为实验对象,在机场实地采集了13个目标的ADS-B脉冲信号数据作为辐射源目标个体识别的训练和测试样本,利用AlexNet和改进的AlexNet验证了算法的有效性。结果表明,改进的AlexNet网络训练时间更快,综合识别率达到98.32%。 展开更多
关键词 广播式自动相关监视(ADS-B) 目标识别 深度学习 卷积神经网络 改进型alexnet
在线阅读 下载PDF
融合时序特征的IEC 61850网络攻击智能检测方法
18
作者 李俊娥 马子玉 +1 位作者 陆秋余 俞凯龙 《信息网络安全》 北大核心 2025年第5期689-699,共11页
针对现有基于人工智能的IEC 61850网络攻击检测方法存在的时序关系建模不足与可解释性缺失问题,文章提出一种融合时序特征的IEC 61850网络攻击智能检测方法。该方法基于滑动窗口提取IEC 61850报文的字段特征和时序特征,通过激活函数优... 针对现有基于人工智能的IEC 61850网络攻击检测方法存在的时序关系建模不足与可解释性缺失问题,文章提出一种融合时序特征的IEC 61850网络攻击智能检测方法。该方法基于滑动窗口提取IEC 61850报文的字段特征和时序特征,通过激活函数优化、批归一化算法引入及全连接层维度缩减对AlexNet模型进行改进,并将其作为检测模型,基于梯度加权类激活映射算法生成类激活图,对检测结果进行解释。实验结果表明,在检测IEC 61850网络攻击时,文章所提方法的准确率高于现有方法,并且能够生成具有结果相关特征标记的类激活图,从而帮助判断检测结果的可信性,并掌握攻击所利用的报文特征细节。 展开更多
关键词 IEC 61850 网络攻击检测 报文特征 改进alexnet 可解释性
在线阅读 下载PDF
基于注意力机制的无监督矿井人员跟踪 被引量:15
19
作者 陈伟 任鹏 +2 位作者 田子建 姜添 伏轩仪 《煤炭学报》 EI CAS CSCD 北大核心 2021年第S01期601-608,共8页
目标跟踪是一项有挑战性的计算机视觉任务,在智能交通、人机交互、视频监控等领域有重要作用。目前已经出现诸多性能优越的跟踪算法,但是在煤矿场景下实现良好的跟踪效果,依旧存在较大困难,主要面临遮挡严重、背景干扰较多、井下人员较... 目标跟踪是一项有挑战性的计算机视觉任务,在智能交通、人机交互、视频监控等领域有重要作用。目前已经出现诸多性能优越的跟踪算法,但是在煤矿场景下实现良好的跟踪效果,依旧存在较大困难,主要面临遮挡严重、背景干扰较多、井下人员较多、数据集样本数量少、缺乏统一标注等挑战,严重影响目标跟踪的效果。针对煤矿场景下,矿井视频数据集不完善、图像质量差以及缺乏统一标注等问题,设计了一种无监督的方法训练目标跟踪模型,将相关滤波和孪生网络相结合,融合二者在目标跟踪任务的优势,构建轻量级端到端的目标跟踪网络模型,采用目标前向跟踪、多帧后向验证方法完成无监督模型的目标跟踪过程。模型的主干网络使用轻量级AlexNet神经网络,解决了煤矿环境下移动平台存储和计算资源有限的问题。根据矿井环境下存在遮挡严重、背景干扰较多、密集目标排列紧密复杂等问题,提出了使用注意力机制提取视频图像中目标重要性信息的方法。在模型的主干网络结构中添加通道注意力机制和空间注意力机制,将重点关注的目标从诸多背景信息中提取出来,通过处理重要信息进而更好地完成跟踪当前目标的任务。将改进后基于注意力机制的无监督矿井人员跟踪模型与ECO,Staple,DSST,SiamFc,SiamRPN模型的平均覆盖率和平均中心位置误差进行对比,发现所提出的目标跟踪模型适用于煤矿复杂环境的人员跟踪问题,具有较好的目标跟踪效果。 展开更多
关键词 矿井人员跟踪 无监督学习 注意力机制 孪生网络 alexnet神经网络
在线阅读 下载PDF
基于卷积神经网络的盘式刹车片表面缺陷检测 被引量:5
20
作者 武照云 高梦媛 +2 位作者 张颖旭 张中伟 吴立辉 《组合机床与自动化加工技术》 北大核心 2023年第3期70-73,共4页
汽车刹车片质量关系车辆驾驶安全,目前汽车刹车片表面缺陷主要采用人工抽检和机器视觉检测的方法,人工抽检存在效率低、易出现漏判与误判表面缺陷的问题,机器视觉检测则需要依靠被检测对象的特定特征进行检测。为此,以业界广泛应用的盘... 汽车刹车片质量关系车辆驾驶安全,目前汽车刹车片表面缺陷主要采用人工抽检和机器视觉检测的方法,人工抽检存在效率低、易出现漏判与误判表面缺陷的问题,机器视觉检测则需要依靠被检测对象的特定特征进行检测。为此,以业界广泛应用的盘式刹车片为研究对象,提出一种改进AlexNet卷积神经网络模型,即AlexNet6_BN模型,对盘式刹车片进行表面缺陷检测。对经典AlexNet卷积神经网络模型中的卷积层进行调整,增加了1层卷积层和1层池化层,调整首层卷积核大小为13×13以提取更为显著的样本特征,并在每层卷积层后用批量标准化代替原来的局部响应归一化以加快网络收敛速度。实验测试表明,改进后的网络模型对刹车片表面缺陷识别的准确率均高于AlexNet、VGG16等经典网络,其检测准确率达到97%。 展开更多
关键词 盘式刹车片 表面缺陷检测 alexnet 卷积神经网络
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部