The finite element analysis and the optimum design of aluminum profile extrusion mould were investigated using the ANSYS software and its parameterized modeling method. The optimum dimensions of the mould were obtaine...The finite element analysis and the optimum design of aluminum profile extrusion mould were investigated using the ANSYS software and its parameterized modeling method. The optimum dimensions of the mould were obtained. It is found that the stress distribution is very uneven, and the stress convergence is rather severe in the bridge of the aluminum profile extrusion mould. The optimum height of the mould is 70.527 mm, and the optimum radius of dividing holes are 70.182 mm and 80.663 mm. Increasing the height of the mould in the range of 61.282 mm to 70.422 mm can prolong its longevity, but when the height is over 70.422 mm, its longevity reduces.展开更多
This paper addresses the question of how to support the designer with appropriate knowledge during conceptual design. It begins with a discussion of knowledge-based support for design and is followed by a scenario acc...This paper addresses the question of how to support the designer with appropriate knowledge during conceptual design. It begins with a discussion of knowledge-based support for design and is followed by a scenario account of the use of a Knowledge Support System. A system is described that demonstrates interaction with different forms of knowledge in concept vehicle design.It supports the creation of new designs by way of a solution generation and evaluation process that relies upon co-operation between the designer and the knowledge system. The results of user evaluation gave rise to a current research agenda which addresses the requirements of a multi-user platform for a design knowledge support environment for collaborative team work.展开更多
In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints o...In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints on dynamic stress and displacement and upper & lower limits of the design variables. The numerical characteristic of dynamic response and sensitivity of dynamic response based on probability of structure were deduced respectively. By equivalent disposing, the reliability constraints were changed into conventional forms. The SUMT method was used in the optimization process.Two examples illustrate the correctness and practicability of the optimum model and solving approach.展开更多
The EQ6105DTAA diesel engine which first pattern en gi ne is EQD6105T is developed through the original EQ6102 diesel engine and other advanced engine structures. This paper analyses performance parameters, general la...The EQ6105DTAA diesel engine which first pattern en gi ne is EQD6105T is developed through the original EQ6102 diesel engine and other advanced engine structures. This paper analyses performance parameters, general layout and parts design process of the diesel engine. The development cycle is s horten by CAD/CAE/CAM technology. Through experiment, the general performance of the engine is in keeping ahead in our country. With boosting mid-cooling technology and related designing correction in EQ6105 DTAA diesel engine, it had obtained better motivity and economy. The full load s teady smog emission and smog emission during simulated free accelerating are all meeting with GB14761.6-93, GB3847-1999 limit requirement. The prototype had p assed reliability test and has reliable parts. It performance indexes are in the leading position in same diesel engine in China. The 13 working conditions gas pollute and particle discharging in this pro totype can meet the limit requirement of GB17691-2001, phase I. The EQ6105DTAA diesel engine parts has good generality with existing types, which lower down th e production cost.展开更多
The bone is a naturally occurring composite system comprising collagen matrix and hydroxyapatites capable of generating sufficient strength and toughness to support mechanical loads and resist fracture,respectively.Th...The bone is a naturally occurring composite system comprising collagen matrix and hydroxyapatites capable of generating sufficient strength and toughness to support mechanical loads and resist fracture,respectively.The material strength depends largely on the elastic properties,whereas the toughness depends on not only the elastic,but also the plastic properties.Thus,both elastic and plastic properties must be considered in the analysis of bone biomechanics and the design of osteogenic materials.The bone is capable of optimizing its elastic and plastic properties by integrating stiff hydroxyapatites and ductile collagen fibrils into a hierarchically ordered architecture,an effective mechanism to support the bone strength and toughness.Such a mechanism can be used as a model for designing osteogenic materials.展开更多
Diesel engines meeting the latest emission regulations must be equipped with exhaust gas aftertreatment system,including diesel oxidation catalysts(DOC),diesel particulate filters(DPF),and selective catalytic reductio...Diesel engines meeting the latest emission regulations must be equipped with exhaust gas aftertreatment system,including diesel oxidation catalysts(DOC),diesel particulate filters(DPF),and selective catalytic reduction(SCR).However,before the final integration of the aftertreatment system(DOC+DPF+SCR)and the diesel engine,a reasonable structural optimization of the catalytic converters and a large number of bench calibration tests must be completed,involving large costs and long development cycles.The design and optimization of the exhaust gas aftertreatment system for a heavy-duty diesel engine was proposed in this paper.Firstly,one-dimensional(1D)and threedimensional(3D)computational models of the exhaust gas aftertreatment system accounting for the structural parameters of the catalytic converters were established.Then based on the calibrated models,the effects of the converter’s structural parameters on their main performance indicators,including the conversion of various exhaust pollutants and the temperatures and pressure drops of the converters,were studied.Finally,the optimal design scheme was obtained.The temperature distribution of the solid substrates and pressure distributions of the catalytic converters were studied based on the 3D model.The method proposed in this paper has guiding significance for the optimization of diesel engine aftertreatment systems.展开更多
This paper presents a structured methodology for local network design engineering (SMLNDE). A complex and fuzzy project for local network design can be decomposed into a set of simple and particular activities using t...This paper presents a structured methodology for local network design engineering (SMLNDE). A complex and fuzzy project for local network design can be decomposed into a set of simple and particular activities using the SMLNDE. The SMLNDE allows rigorous requirements definition and permits the exhaustive consideration of the large number of factors influencing local network design engineering. The complete and clear design documentations and an optimal design can also be provided by the methodology. The SMLNDE has been implemented using the structured analysis and design technique. The study shows that the SMLNDE is an effective design methodology for the large and complex local networks.展开更多
Due to the importance and role of systems engineering in space mission developments, optimization of Omid's systems engineering as a milestone to its current and future generations is focused. In this regard systems ...Due to the importance and role of systems engineering in space mission developments, optimization of Omid's systems engineering as a milestone to its current and future generations is focused. In this regard systems engineering management organization as the basis of optimization work flow in the conceptual design phase is proposed for improvement. To improve the systems engineering management, an agile enhanced organization chart is developed that defines various system duties. This is a type of concurrent engineering approach that promotes direct communication and data interchange between the team members. Due to the importance of decision making in the conceptual design phase, two design matrices are constructed that portray merits of various design options in terms of improved satellite life as well as specific choices of remote sensing capability for the Omid second generation(Omid-2). Conceptual design optimization is explored considering several structural objectives as well as optimal solar energy absorption utilizing a multiple criteria decision making approach. The Eigenvector method is utilized to formulate the objective function via expert judgment. This approach is robust with respect to designer probable miss-judgment. The optimized version of Omid-2 turned out to be a passive Z-axis spin stabilized satellite made of hexagonal honeycomb configuration with carbon-epoxy side panels and Aluminum bottom plate.展开更多
NOx and soot emissions from diesel engines can be greatly reduced by pressure wave supercharging(PWS).The diesel engine matched with PWS needs redesigning its exhaust pipes.Except for meeting the installation requirem...NOx and soot emissions from diesel engines can be greatly reduced by pressure wave supercharging(PWS).The diesel engine matched with PWS needs redesigning its exhaust pipes.Except for meeting the installation requirements,the exhaust gas must be stable in pressure before rushing into PWS.In this paper the lateral and center ported divergent exhaust pipes are designed,modeled geometrically and analyzed structurally based on a 3-D design software-CATIA to determine the structure of two exhaust pipes having the required inner volume.Then flow analysis for two exhaust pipes is done using a flow analysis software-ANASYS.Moreover,the optimal exhaust pipes are determined comprehensively and cast for engine test.Engine test results show that PWS is superior to turbocharging at low engine speeds and inferior to turbocharging in power and emissions at medium-to-high engine speeds.The performance of PWS engine under high speed operating conditions can be improved by contriving larger surge volume intake and exhaust pipes.展开更多
文摘The finite element analysis and the optimum design of aluminum profile extrusion mould were investigated using the ANSYS software and its parameterized modeling method. The optimum dimensions of the mould were obtained. It is found that the stress distribution is very uneven, and the stress convergence is rather severe in the bridge of the aluminum profile extrusion mould. The optimum height of the mould is 70.527 mm, and the optimum radius of dividing holes are 70.182 mm and 80.663 mm. Increasing the height of the mould in the range of 61.282 mm to 70.422 mm can prolong its longevity, but when the height is over 70.422 mm, its longevity reduces.
文摘This paper addresses the question of how to support the designer with appropriate knowledge during conceptual design. It begins with a discussion of knowledge-based support for design and is followed by a scenario account of the use of a Knowledge Support System. A system is described that demonstrates interaction with different forms of knowledge in concept vehicle design.It supports the creation of new designs by way of a solution generation and evaluation process that relies upon co-operation between the designer and the knowledge system. The results of user evaluation gave rise to a current research agenda which addresses the requirements of a multi-user platform for a design knowledge support environment for collaborative team work.
文摘In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints on dynamic stress and displacement and upper & lower limits of the design variables. The numerical characteristic of dynamic response and sensitivity of dynamic response based on probability of structure were deduced respectively. By equivalent disposing, the reliability constraints were changed into conventional forms. The SUMT method was used in the optimization process.Two examples illustrate the correctness and practicability of the optimum model and solving approach.
文摘The EQ6105DTAA diesel engine which first pattern en gi ne is EQD6105T is developed through the original EQ6102 diesel engine and other advanced engine structures. This paper analyses performance parameters, general layout and parts design process of the diesel engine. The development cycle is s horten by CAD/CAE/CAM technology. Through experiment, the general performance of the engine is in keeping ahead in our country. With boosting mid-cooling technology and related designing correction in EQ6105 DTAA diesel engine, it had obtained better motivity and economy. The full load s teady smog emission and smog emission during simulated free accelerating are all meeting with GB14761.6-93, GB3847-1999 limit requirement. The prototype had p assed reliability test and has reliable parts. It performance indexes are in the leading position in same diesel engine in China. The 13 working conditions gas pollute and particle discharging in this pro totype can meet the limit requirement of GB17691-2001, phase I. The EQ6105DTAA diesel engine parts has good generality with existing types, which lower down th e production cost.
文摘The bone is a naturally occurring composite system comprising collagen matrix and hydroxyapatites capable of generating sufficient strength and toughness to support mechanical loads and resist fracture,respectively.The material strength depends largely on the elastic properties,whereas the toughness depends on not only the elastic,but also the plastic properties.Thus,both elastic and plastic properties must be considered in the analysis of bone biomechanics and the design of osteogenic materials.The bone is capable of optimizing its elastic and plastic properties by integrating stiff hydroxyapatites and ductile collagen fibrils into a hierarchically ordered architecture,an effective mechanism to support the bone strength and toughness.Such a mechanism can be used as a model for designing osteogenic materials.
基金Projects(2017YFC0211202,2017YFC0211301)supported by the National Key R&D Program of China。
文摘Diesel engines meeting the latest emission regulations must be equipped with exhaust gas aftertreatment system,including diesel oxidation catalysts(DOC),diesel particulate filters(DPF),and selective catalytic reduction(SCR).However,before the final integration of the aftertreatment system(DOC+DPF+SCR)and the diesel engine,a reasonable structural optimization of the catalytic converters and a large number of bench calibration tests must be completed,involving large costs and long development cycles.The design and optimization of the exhaust gas aftertreatment system for a heavy-duty diesel engine was proposed in this paper.Firstly,one-dimensional(1D)and threedimensional(3D)computational models of the exhaust gas aftertreatment system accounting for the structural parameters of the catalytic converters were established.Then based on the calibrated models,the effects of the converter’s structural parameters on their main performance indicators,including the conversion of various exhaust pollutants and the temperatures and pressure drops of the converters,were studied.Finally,the optimal design scheme was obtained.The temperature distribution of the solid substrates and pressure distributions of the catalytic converters were studied based on the 3D model.The method proposed in this paper has guiding significance for the optimization of diesel engine aftertreatment systems.
文摘This paper presents a structured methodology for local network design engineering (SMLNDE). A complex and fuzzy project for local network design can be decomposed into a set of simple and particular activities using the SMLNDE. The SMLNDE allows rigorous requirements definition and permits the exhaustive consideration of the large number of factors influencing local network design engineering. The complete and clear design documentations and an optimal design can also be provided by the methodology. The SMLNDE has been implemented using the structured analysis and design technique. The study shows that the SMLNDE is an effective design methodology for the large and complex local networks.
文摘Due to the importance and role of systems engineering in space mission developments, optimization of Omid's systems engineering as a milestone to its current and future generations is focused. In this regard systems engineering management organization as the basis of optimization work flow in the conceptual design phase is proposed for improvement. To improve the systems engineering management, an agile enhanced organization chart is developed that defines various system duties. This is a type of concurrent engineering approach that promotes direct communication and data interchange between the team members. Due to the importance of decision making in the conceptual design phase, two design matrices are constructed that portray merits of various design options in terms of improved satellite life as well as specific choices of remote sensing capability for the Omid second generation(Omid-2). Conceptual design optimization is explored considering several structural objectives as well as optimal solar energy absorption utilizing a multiple criteria decision making approach. The Eigenvector method is utilized to formulate the objective function via expert judgment. This approach is robust with respect to designer probable miss-judgment. The optimized version of Omid-2 turned out to be a passive Z-axis spin stabilized satellite made of hexagonal honeycomb configuration with carbon-epoxy side panels and Aluminum bottom plate.
文摘NOx and soot emissions from diesel engines can be greatly reduced by pressure wave supercharging(PWS).The diesel engine matched with PWS needs redesigning its exhaust pipes.Except for meeting the installation requirements,the exhaust gas must be stable in pressure before rushing into PWS.In this paper the lateral and center ported divergent exhaust pipes are designed,modeled geometrically and analyzed structurally based on a 3-D design software-CATIA to determine the structure of two exhaust pipes having the required inner volume.Then flow analysis for two exhaust pipes is done using a flow analysis software-ANASYS.Moreover,the optimal exhaust pipes are determined comprehensively and cast for engine test.Engine test results show that PWS is superior to turbocharging at low engine speeds and inferior to turbocharging in power and emissions at medium-to-high engine speeds.The performance of PWS engine under high speed operating conditions can be improved by contriving larger surge volume intake and exhaust pipes.