Background Although particulate matter, with diameters 〈 2.5 μm (PM2.5) and 〈 10 μm (PM10), and other pollutants have been associated with cardiovascular morbidity and mortality, the effect of pollutants on ac...Background Although particulate matter, with diameters 〈 2.5 μm (PM2.5) and 〈 10 μm (PM10), and other pollutants have been associated with cardiovascular morbidity and mortality, the effect of pollutants on acute myocardial infarctions (AMIs) has rarely been investigated in Asia, especially in Shanghai, China. Methods Between 1 November 2013 and 27 April 2014, 972 patients from the Pudong District, Shanghai City, were assessed by the Emergency Medical Service. A case-crossover design was used to analyze exposure to air pollution and the AMI risk. Exposures to PM2.5, PM10, nitrogen dioxide (NO2), sulphurdioxide (SO2), and carbon monoxide (CO) were based on the mean urban background levels. The associations among AMI admissions, the included pollutants, temperature, and relative humidity were analyzed using correlation and logistic regression. Results The urban background levels of PM2.5, PM10 and CO were associated with an increased risk of AMI, unlike NO2 and SO2 levels. The OR (95% CI) for AMI were 1.16 (1.03-1.29), 1.05 (1.01-1.16), 0.82 (0.75-1.02), 0.87 (0.63-1.95), and 1.08 (1.02-1.21) for PM2.5, PM10, NO2, SO2, and CO, respectively. Increases in the air quality index (AQI) were associated with more AMI occurrences. There was no correlation between fluctuations in temperature and relative humidity with AMI hospital admissions. Conclusions Short-term exposure to moderate-serious pollution levels is associated with increased risk of AMI. Increased PM2.5, PM10 and CO levels are related to increased AMI admissions.展开更多
More effective environmental pollution control and management are needed due to the increasing environ-mental impacts from a range of human activities and the growing public demands for a better living environment. Ur...More effective environmental pollution control and management are needed due to the increasing environ-mental impacts from a range of human activities and the growing public demands for a better living environment. Urban air pollution is a serious environmental issue that poses adverse impacts on the health of people and the environment in most metropolitan areas. In this paper,we propose a geoinformatics augmented framework of environmental modelling and information sharing for supporting effective urban air pollution control and management. This framework is out-lined in terms of its key components and processes including: 1) an integrated,adaptive network of sensors for envi-ronmental monitoring; 2) a set of distributed,interoperable databases for data management; 3) a set of intelligent,robust algorithms and models for environmental modelling; 4) a set of flexible,efficient user interfaces for data access and in-formation sharing; and 5) a reliable,high capacity,high performance computing and communication infrastructure for integrating and supporting other framework components and processes.展开更多
This paper presents the research on the atmospheric corrosion rates of carbon steel, zinc and copper in Chongqing, which was a corrosion subprogram of an international project, Regional Air Pollution in Developing Cou...This paper presents the research on the atmospheric corrosion rates of carbon steel, zinc and copper in Chongqing, which was a corrosion subprogram of an international project, Regional Air Pollution in Developing Countries. We performed field exposure tests of carbon steel, zinc and copper at an urban site Guanyinqiao and a rural site Tieshanping inChongqing, then used grey relational analysis, based on the database of the whole corrosion project, to determine the order of the effect of environmental factors on corrosion rates of tested metals, and established dose-response functions for these three metals. The results showed that the two crucial agents of acidic environment, SO2 and H+, were common factors that contributed most to the corrosion of the tested metals. The established dose-response functions for outdoor carbon steel and zinc are proved applicable to use in Chongqing, but the function for copper needs further modifying. We employed these dose- response functions and general environmental data to elaborate the maps of corrosion rate respectively of carbon steel and zinc by geological information system (GIS) technique which help to identify areas of high corrosion damage risk. An acceptable annual average SO2 level of 21 μg/m3 for carbon steel and that of 61 μg/m3 for zinc are also put forward to control the air pollution impact on atmospheric corrosion in Chongqing urban areas.展开更多
Objective In recent years,many studies have reported that air pollution is a risk factor for type 2 diabetes mellitus(T2DM).The aim of this systematic review and meta・analysis is to summarize the evidence about the as...Objective In recent years,many studies have reported that air pollution is a risk factor for type 2 diabetes mellitus(T2DM).The aim of this systematic review and meta・analysis is to summarize the evidence about the association between exposure to air pollution andT2DM in developing countries.Methods The databases,including PubMed,EMBASE and Web of Science,were systematically searched for studies published up to 31 March 2022.Studies about the association between air pollution andT2DM prevalence or incidence in developing countries were included.The odds ratio(OR)was used as effect estimate.We synthesized the included studies in the meta-analysis.Results We included 8 cross-sectional studies and 8 cohort studies,all conducted in developing countries.Meta-analysis of 8 studies on PM_(2.5)(particulate matter ≤2.5 μm in diameter)showed that T2DM prevalence was significantly associated with PM_(2.5)exposure(OR=1.12;95%CI:1.07,1.17;P<0.001).The association between air pollutants andT2DM incidence was not estimated due to the limited relevant studies.Conclusions The exposure to PM_(2.5)would be positively associated with an increased prevalence of T2DM in developing countries.Some effective measures should be taken to reduce air pollutant exposure in people who are vulnerable to diabetes.展开更多
an air cleaner employing pulse induced plasma chemical process to remove dust and carbon monoxide (CO) in road tunnels is presented, which is composed of mainly a precipitator, a reactor, a flow control system, a powe...an air cleaner employing pulse induced plasma chemical process to remove dust and carbon monoxide (CO) in road tunnels is presented, which is composed of mainly a precipitator, a reactor, a flow control system, a power supply and a measurement system. Its performances are studied in simulated air conditions. It is found that the rate of dust removal is dependent on the voltage of the pulse power, the distance between the two dust collecting plates of the electrostatic precipitator, the effective length of the precipitator and the air flow rate in the precipitator, and that of CO removal is affected by the voltage and frequency of the super pulse power, the air flow rate in the reactor and the relative humidity of air. Applying such an cleaner of a proper design to the treatment of polluted air at a flow rate of 7 m/s can achieve the rate of dust removal up to 93 % and that of CO removal up to 72.6 %, which efficiently controls the concentrations of CO and dust under allowable limits. It is implied that the proposed air cleaner is a potential solution to air control in road tunnels, and is prominent for its performances and saving the huge cost of longitudinal ventilation tunnel or vertical vent and ventilation facilities.展开更多
The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective ...The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective manner.In this review,we investigate the development of industrialwaste-based functional materials for various gas pollutant removal and consider the relevant reaction mechanism according to different types of industrial solid waste.We see a recent effort towards achieving high-performance environmental functional materials via chemical or physical modification,in which the active components,pore size,and phase structure can be altered.The review will discuss the potential of using industrial solid wastes,these modified materials,or synthesized materials from raw waste precursors for the removal of air pollutants,including SO_(2),NO_(x),Hg^(0),H_(2)S,VOCs,and CO_(2).The challenges still need to be addressed to realize this potential and the prospects for future research fully.The suggestions for future directions include determining the optimal composition of these materials,calculating the real reaction rate and turnover frequency,developing effective treatment methods,and establishing chemical component databases of raw industrial solid waste for catalysts/adsorbent preparation.展开更多
While bird populations are declining,the factors associated with this decline are unclear.Based on laboratory experiments,air pollution has long been recognized as a factor causing oxidative stress and adversely aff e...While bird populations are declining,the factors associated with this decline are unclear.Based on laboratory experiments,air pollution has long been recognized as a factor causing oxidative stress and adversely aff ecting bird health.Recently,studies employing an epidemiological approach have reported signifi cant declines in avian populations in Central Europe and the United States due to air pollution,and ozone in particular.We advocate that urgent actions are needed to mitigate these eff ects,which threaten biodiversity and environmental health,and propose a series of measures which can enlighten the path toward mitigating air pollution eff ects on avian populations.展开更多
Ground-level ozone(O_(3)) is a widespread air pollutant causing extensive injuries in plants.However,its effects on perennial energy crops remain poorly under-stood due to technical difficulties in cultivating fast-gr...Ground-level ozone(O_(3)) is a widespread air pollutant causing extensive injuries in plants.However,its effects on perennial energy crops remain poorly under-stood due to technical difficulties in cultivating fast-growing shrubs for biomass production under O_(3) treatment on the field.Here we present the results of a two-year evaluation in the framework of which willow(Salix sachalinensis F.Schmid)shrubs were exposed to ambient(AOZ)or elevated(EOZ)O_(3) in two successive growing seasons(2014,2015)and treated with 0(EDU0)or 400 mg L^(−1)(EDU400)eth-ylenediurea spray in the second growing season.In 2014,EOZ altered the chemical composition of both top young and fallen leaves,and a novel mechanism of decreasing Mg in fallen leaves while highly enriching it in young top leaves was revealed in shrubs exposed to EOZ.In 2015,EDU400 alleviated EOZ-induced decreases in leaf fresh mass to dry mass ratio(FM/DM)and leaf mass per area(LMA).While EDU400 protected against EOZ-induced suppression of the maximum rate at which leaves can fix carbon(A_(max))in O_(3)-asymptomatic leaves,it did not alle-viate EOZ-induced suppression of the maximum rates of carboxylation(VCmax)and electron transport(J_(max))and chlorophylls a,b,and a+b in the same type of leaves.In O_(3)-symptomatic leaves,however,EDU400 alleviated EOZ-induced suppression of chlorophylls a and a+b,indicating different mode of action of EDU between O_(3)-asymptomatic and O_(3)-symptomatic leaves.Extensive herbivory occurred only in AOZ-exposed plants,leading to suppressed biomass production,while EOZ also led to a similar suppression of biomass production(EDU0×EOZ vs.EDU400×EOZ).In 2016,carry-over effects were also evaluated following cropping and transplantation into new ambient plots.Effects of EOZ in the preceding growing seasons extended to the third growing season in the form of suppressed ratoon biomass production,indicating carry-over effect of EOZ.Although EDU400 protected against EOZ-induced suppression of biomass production when applied in 2015,there was no carry-over effect of EDU in the absence of EDU treatment in 2016.The results of this study provide novel mechanistic understandings of O_(3)and EDU modes of action and can enlighten cultivation of willow as energy crop.展开更多
Together,the heat island eff ect and air pollution pose a threat to human health and well-being in urban settings.Nature-based solutions such as planting trees are a mitigation strategy to improve outdoor temperatures...Together,the heat island eff ect and air pollution pose a threat to human health and well-being in urban settings.Nature-based solutions such as planting trees are a mitigation strategy to improve outdoor temperatures(thermal comfort)and enhance air quality in urban areas.In this study,outdoor thermal comfort,and particulate matter levels were compared between treeless and treed areas to provide a better understanding of how street trees improve thermal comfort and air quality.Street trees decreased the physiological equivalent temperature from 46.3 to 44.2℃in summer but increased it from 36.4 to 37.5℃in autumn.Air temperature and relative humidity contributed more in summer while wind speed contributed more in autumn.Particulate matter concentrations were negatively correlated with physiological equivalent temperature in summer but not in autumn.The presence of trees decreased concentrations of fi ne particulate matter in hot summer conditions but increased in hot autumn conditions.The presence of trees increased coarse particulate matter in very hot summer conditions in summer and in hot autumn conditions.Overall,the layout of trees in urban street canyons should consider the trade-off between outdoor thermal comfort and air quality improvement.展开更多
An airborne multi-axis differential optical absorption spectroscopic (AMAX-DOAS) instrument was developed and applied to measure tropospheric NO2 in the Pearl River Delta region in the south of China. By combining t...An airborne multi-axis differential optical absorption spectroscopic (AMAX-DOAS) instrument was developed and applied to measure tropospheric NO2 in the Pearl River Delta region in the south of China. By combining the measurements in nadir and zenith directions and analyzing the UV and visible spectral region using the DOAS method, information about tropospheric NO2 vertical columns was obtained. Strong tropospheric NO2 signals were detected when flying over heavilly polluted regions and point sources like plants. The AMAX-DOAS results were compared with ground-based MAX-DOAS observations in the southwest of Zhuhai city using the same parameters for radiative transport calculations. The difference in vertical column data between the two instruments is about 8%. Our data were also compared with those from OMI and fair agreement was obtained with a correlation coefficient R of 0.61. The difference between the two instruments can be attributed to the different spatial resolution and the temporal mismatch during the measurements.展开更多
This paper presents a one-dimensional unsteady flow model and a numerical procedure based on the model. Comparisons between the theory and full scale experiments in a railway tunnel show that the model is capable of p...This paper presents a one-dimensional unsteady flow model and a numerical procedure based on the model. Comparisons between the theory and full scale experiments in a railway tunnel show that the model is capable of produce precise predictions for piston wind and pollutant concentration in railway tunnels.展开更多
Activated red mud(RM)has been proved to be a promising base material for the selective catalysis reduction(SCR)of NOx.The inherent low reducibility and acidity limited its low-temperature activity.In this work,molybde...Activated red mud(RM)has been proved to be a promising base material for the selective catalysis reduction(SCR)of NOx.The inherent low reducibility and acidity limited its low-temperature activity.In this work,molybdenum oxide,tungsten oxide,and cerium oxide were used to reconfigure the redox sites and acid sites of red mud based catalyst.When activated red mud was reconfigured by cerium-tungsten oxide(Ce-W@RM),the NOx conversion kept above 90%at 219-480℃.The existence of Ce^(3+)/Ce^(4+) redox electron pairs provided more surface adsorbed oxygen(O_(α)) and served as a redox cycle.Positive interactions between Ce,W species and Fe oxide in red mud occurred,which led to the formation of unsaturated chemical bond and promoted the activation of adsorbed NH_(3) species.WO_(3) and Ce_(2)(WO_(4))_(3)(formed by solid-state reaction between Ce and W species)could provide more Brønsted acid sites(W-O modes of WO_(3),W=O or W-O-W modes of Ce_(2)(WO_(4))_(3)).CeO_(2) species could provide more Lewis acid sites.The Langmuir-Hinshelwood(L-H)routes and Eley-Rideal(E-R)routes occurred in the low-temperature SCR reaction on the Ce-W@RM surface.NH_(4)^(+) species on Brønsted acid sites,NH_(3) species on Lewis acid sites,bidentate nitrate and bridging nitrate species were key active intermediates species.展开更多
Chongqing is the largest municipality under the Chinese Central Government (MCG) in terms of administrative area and population and is now the most important economic and cultural center of the upper Yangtze River and...Chongqing is the largest municipality under the Chinese Central Government (MCG) in terms of administrative area and population and is now the most important economic and cultural center of the upper Yangtze River and Three Gorges area. The Three Gorges Dam project, one of the largest world infrastructure projects, causes a great deal of immigration to Chongqing and results in the rapid urbanization of the city, and it has brought in a great deal of environmental impact, which is a global concerned issue. This paper introduces the city profile of Chongqing municipality and its urbanization impact on energy and environment. The demand and the trend of energy consumption in built environment (building and transport) have been analysed. The living environment of Chongqing residents and the local energy efficient policy have been introduced. Finally the authors discuss the key issues of the sustainable urban development of Chongqing.展开更多
Ground-level ozone(O_(3)) aff ects vegetation and threatens environmental health when levels exceed critical values,above which adverse eff ects are expected.Cyprus is expected to be a hotspot for O_(3)concentrations ...Ground-level ozone(O_(3)) aff ects vegetation and threatens environmental health when levels exceed critical values,above which adverse eff ects are expected.Cyprus is expected to be a hotspot for O_(3)concentrations due to its unique position in the eastern Mediterranean,receiving air masses from Europe,African,and Asian continents,and experiencing a warm Mediterranean climate.In Cyprus,the spatiotemporal features of O_(3) are poorly understood and the potential risks for forest health have not been explored.We evaluated O_(3) and nitrogen oxides(NO and NO 2)at four regional background stations at different altitudes over 2014−2016.O_(3) risks to vegetation and human health were estimated by calculating accumulated O_(3)exposure over a threshold of 40 nmol mol^(−1)(AOT40)and cumulative exposure to mixing ratios above 35 nmol mol^(−1)(SOMO35)indices.The data reveal that mean O_(3)concentrations follow a seasonal pattern,with higher levels in spring(51.8 nmol mol^(−1))and summer(53.2 nmol mol^(−1))and lower levels in autumn(46.9 nmol mol^(−1))and winter(43.3 nmol mol^(−1)).The highest mean O_(3)exposure(59.5 nmol mol^(−1)) in summer occurred at the high elevation station Mt.Troodos(1819 m a.s.l.).Increasing(decreasing)altitudinal gradients were found for O_(3)(NO x),driven by summer–winter diff erences.The diurnal patterns of O_(3) showed little variation.Only at the lowest altitude O_(3) displayed a typical O_(3) diurnal pattern,with hourly diff erences smaller than 15 nmol mol^(−1).Accumulated O_(3) exposures at all stations and in all years exceeded the European Union’s limits for the protection of vegetation,with average values of 3-month(limit:3000 nmol mol^(−1)h)and 6-month(limit:5000 nmol mol^(−1)h)AOT40 for crops and forests of 16,564 and 31,836 nmol mol^(−1)h,respectively.O_(3) exposures were considerably high for human health,with an average SOMO35 value of 7270 nmol mol^(−1) days across stations and years.The results indicate that O_(3) is a major environmental and public health issue in Cyprus,and policies must be adopted to mitigate O_(3) precursor emissions at local and regional scales.展开更多
The potential association between medical resources and the proportion of oldest-old(90 years of age and above)in the Chinese population was examined,and we found that the higher proportion of oldest-old was associate...The potential association between medical resources and the proportion of oldest-old(90 years of age and above)in the Chinese population was examined,and we found that the higher proportion of oldest-old was associated with the higher number of beds in hospitals and health centers.展开更多
Japanese larch(Larix kaempferi(Lamb.)Carr.)and its hybrid are economically important coniferous trees widely grown in the Northern Hemisphere.Ground-level ozone(O_(3))concentrations have increased since the preindustr...Japanese larch(Larix kaempferi(Lamb.)Carr.)and its hybrid are economically important coniferous trees widely grown in the Northern Hemisphere.Ground-level ozone(O_(3))concentrations have increased since the preindustrial era,and research projects showed that Japanese larch is susceptible to elevated O_(3)exposures.Therefore,methodologies are needed to(1)protect Japanese larch against O_(3)damage and(2)conduct biomonitoring of O_(3)in Japanese larch forests and,thus,monitor O_(3)risks to Japanese larch.For the first time,this study evaluates whether the synthetic chemical ethylenediurea(EDU)can protect Japanese larch against O_(3)damage,in two independent experiments.In the first experiment,seedling communities,simulating natural regeneration,were treated with EDU(0,100,200,and 400 mg L^(-1))and exposed to either ambient or elevated O_(3)in a growing season.In the second experiment,individually-grown saplings were treated with EDU(0,200 and 400 mg L-1)and exposed to ambient O_(3)in two growing seasons and to elevated O_(3)in the succeeding two growing seasons.The two experiments revealed that EDU concentrations of 200-400 mg L^(-1)could protect Japanese larch seedling communities and individual saplings against O_(3)-induced inhibition of growth and productivity.However,EDU concentrations≤200 mg L^(-1)did offer only partial protection when seedling communities were coping with higher level of O_(3)-induced stress,and only 400 mg EDU L^(-1)fully protected communities under higher stress.Therefore,we conclude that among the concentrations tested the concentration offering maximum protection to Japanese larch plants under high competition and O_(3)-induced stress is that of 400 mg EDU L^(-1).The results of this study can provide a valuable resource of information for applied forestry in an O_(3)-polluted world.展开更多
Ground-level ozone(O_(3))pollution is a persistent environmental issue that can lead to adverse effects on trees and wood production,thus indicating a need for forestry interventions to mediate O_(3) effects.We treate...Ground-level ozone(O_(3))pollution is a persistent environmental issue that can lead to adverse effects on trees and wood production,thus indicating a need for forestry interventions to mediate O_(3) effects.We treated hybrid larch(Larix gmelinii var.japonica×L.kaempferi)saplings grown in nutrient-poor soils with 0 or 400 mg L^(-1) water solutions of the antiozonant ethylenediurea(EDU0,EDU400)and exposed them to ambient O_(3)(AOZ;08:00-18:00≈30 nmol mol^(-1)) or elevated O_(3)(EOZ;08:00-18:00≈60 nmol mol^(-1))over three growing seasons.We found that EDU400 protected saplings against most effects of EOZ,which included extensive visible foliar injury,premature senescence,decreased photosynthetic pigment contents and altered balance between pigments,suppressed gas exchange and biomass production,and impaired leaf litter decay.While EOZ had limited effects on plant growth(suppressed stem diameter),it decreased the total number of buds per plant,an effect that was not observed in the first growing season.These results indicate that responses to EOZ might have implications to plant competitiveness,in the long term,as a result of decreased potential for vegetative growth.However,when buds were standardized per unit of branches biomass,EOZ significantly increased the number of buds per unit of biomass,suggesting a potentially increased investment to bud development,in an effort to enhance growth potential and competitiveness in the next growing season.EDU400 minimized most of these effects of EOZ,significantly enhancing plant health under O_(3)-induced stress.The effect of EDU was attributed mainly to a biochemical mode of action.Therefore,hybrid larch,which is superior to its parents,can be significantly improved by EDU under long-term elevated O_(3) exposure,providing a perspective for enhancing afforestation practices.展开更多
Abstarct In recognition of the rising threats of groundlevel ozone(O_(3))pollution to forests,agricultural crops,and other types of vegetation,accurate and realistic risk assessment is urgently needed.The accumulated ...Abstarct In recognition of the rising threats of groundlevel ozone(O_(3))pollution to forests,agricultural crops,and other types of vegetation,accurate and realistic risk assessment is urgently needed.The accumulated O_(3)exposure over a concentration threshold of 40 nmol mol-1(AOT40)is the most commonly used metric to investigate O3 exposure and its effects on vegetation and to conduct vegetation risk assessment.It is also used by international regulatory authorities for deriving critical levels and setting standards to protect vegetation against surface O_(3).However,fixed periods of the growing season are used universally,yet growing seasons vary with latitudes and elevations,and the periods of plant lifespan also differ among annual species.Here,we propose the concept of the Annual O_(3)Spectrum Profile(AO_(3)SP)and apply it to calculate the profile of AOT40 throughout the year(AAOT40SP,Annual AOT40 Spectrum Profile)using the International Organization for Standardization(ISO)weeks as a shorter window ISO-based accumulated exposure.Using moving time periods of three(for crops)or six(for forests)months,the i so AOT40 behavior throughout the year can be examined as a diagnostic tool for O_(3)risks in the short-or long-term during the lifecycle of local vegetation.From this analysis,AOT40(i so AOT40)that is most representative for the local conditions and specific situations can be identified,depending on the exact growing season and lifecycle of the target vegetation.We applied this novel approach to data from five background monitoring stations located at different elevations in Cyprus.Our results show that the AAOT40SP approach can be used for improved and more realistic assessment of O3 risks to vegetation.The AO_(3)SP approach can also be applied using metrics other than AOT40(exposure-or flux-based),adding a new dimension to the way O_(3)risk to vegetation is assessed.展开更多
This study develops a bottom-up model to quantitatively assess the comprehensive effects of replacing traditional petroleum-powered vehicles with natural gas vehicles(NGVs) in China based on an investigation of the ...This study develops a bottom-up model to quantitatively assess the comprehensive effects of replacing traditional petroleum-powered vehicles with natural gas vehicles(NGVs) in China based on an investigation of the direct energy consumption and critical air pollutant(CAP) emission intensity, life-cycle energy use and greenhouse gas(GHG) emission intensity of NGV fleets. The results indicate that, on average, there are no net energy savings from replacing a traditional fuel vehicle with an NGV. Interestingly, an NGV results in significant reductions in direct CAP and life-cycle GHG emissions compared to those of a traditional fuel vehicle, ranging from 61% to 76% and 12% to 29%, respectively. Due to the increasing use of natural gas as a vehicle fuel in China(i.e. approximately 28.2 billion cubic metres of natural gas in2015), the total petroleum substituted with natural gas was approximately 23.8 million tonnes(Mt), which generated a GHG emission reduction of 16.9 Mt of CO2 equivalent and a CAP emission reduction of 1.8 Mt in 2015. Given the significant contribution of NGVs, growing the NGV population in 2020 will further increase the petroleum substitution benefits and CAP and GHG emission reduction benefits by approximately 42.5 Mt of petroleum-based fuel, 3.1 Mt of CAPs and 28.0 Mt of GHGs. By 2030, these benefits will reach 81.5 Mt of traditional petroleum fuel, 5.6 Mt of CAPs and 50.5 Mt of GHGs, respectively.展开更多
https://www.sciencedirect.com/journal/building-and-environment/vol/172/suppl/C Volume 172,April 2020(1)City-scale single family residential building energy consumption prediction using genetic algorithm-based Numerica...https://www.sciencedirect.com/journal/building-and-environment/vol/172/suppl/C Volume 172,April 2020(1)City-scale single family residential building energy consumption prediction using genetic algorithm-based Numerical Moment Matching technique,by Elham Jahani,Kristen Cetin,In Ho Cho,Article 106667Abstract:Grow ing energy consumption in urban areas has increased the importance of planning for future energy systems.展开更多
文摘Background Although particulate matter, with diameters 〈 2.5 μm (PM2.5) and 〈 10 μm (PM10), and other pollutants have been associated with cardiovascular morbidity and mortality, the effect of pollutants on acute myocardial infarctions (AMIs) has rarely been investigated in Asia, especially in Shanghai, China. Methods Between 1 November 2013 and 27 April 2014, 972 patients from the Pudong District, Shanghai City, were assessed by the Emergency Medical Service. A case-crossover design was used to analyze exposure to air pollution and the AMI risk. Exposures to PM2.5, PM10, nitrogen dioxide (NO2), sulphurdioxide (SO2), and carbon monoxide (CO) were based on the mean urban background levels. The associations among AMI admissions, the included pollutants, temperature, and relative humidity were analyzed using correlation and logistic regression. Results The urban background levels of PM2.5, PM10 and CO were associated with an increased risk of AMI, unlike NO2 and SO2 levels. The OR (95% CI) for AMI were 1.16 (1.03-1.29), 1.05 (1.01-1.16), 0.82 (0.75-1.02), 0.87 (0.63-1.95), and 1.08 (1.02-1.21) for PM2.5, PM10, NO2, SO2, and CO, respectively. Increases in the air quality index (AQI) were associated with more AMI occurrences. There was no correlation between fluctuations in temperature and relative humidity with AMI hospital admissions. Conclusions Short-term exposure to moderate-serious pollution levels is associated with increased risk of AMI. Increased PM2.5, PM10 and CO levels are related to increased AMI admissions.
文摘More effective environmental pollution control and management are needed due to the increasing environ-mental impacts from a range of human activities and the growing public demands for a better living environment. Urban air pollution is a serious environmental issue that poses adverse impacts on the health of people and the environment in most metropolitan areas. In this paper,we propose a geoinformatics augmented framework of environmental modelling and information sharing for supporting effective urban air pollution control and management. This framework is out-lined in terms of its key components and processes including: 1) an integrated,adaptive network of sensors for envi-ronmental monitoring; 2) a set of distributed,interoperable databases for data management; 3) a set of intelligent,robust algorithms and models for environmental modelling; 4) a set of flexible,efficient user interfaces for data access and in-formation sharing; and 5) a reliable,high capacity,high performance computing and communication infrastructure for integrating and supporting other framework components and processes.
基金a corrosion subprogram of the international project Regional Air Pollution in Developing Countries under the contract No. JT73065.
文摘This paper presents the research on the atmospheric corrosion rates of carbon steel, zinc and copper in Chongqing, which was a corrosion subprogram of an international project, Regional Air Pollution in Developing Countries. We performed field exposure tests of carbon steel, zinc and copper at an urban site Guanyinqiao and a rural site Tieshanping inChongqing, then used grey relational analysis, based on the database of the whole corrosion project, to determine the order of the effect of environmental factors on corrosion rates of tested metals, and established dose-response functions for these three metals. The results showed that the two crucial agents of acidic environment, SO2 and H+, were common factors that contributed most to the corrosion of the tested metals. The established dose-response functions for outdoor carbon steel and zinc are proved applicable to use in Chongqing, but the function for copper needs further modifying. We employed these dose- response functions and general environmental data to elaborate the maps of corrosion rate respectively of carbon steel and zinc by geological information system (GIS) technique which help to identify areas of high corrosion damage risk. An acceptable annual average SO2 level of 21 μg/m3 for carbon steel and that of 61 μg/m3 for zinc are also put forward to control the air pollution impact on atmospheric corrosion in Chongqing urban areas.
文摘Objective In recent years,many studies have reported that air pollution is a risk factor for type 2 diabetes mellitus(T2DM).The aim of this systematic review and meta・analysis is to summarize the evidence about the association between exposure to air pollution andT2DM in developing countries.Methods The databases,including PubMed,EMBASE and Web of Science,were systematically searched for studies published up to 31 March 2022.Studies about the association between air pollution andT2DM prevalence or incidence in developing countries were included.The odds ratio(OR)was used as effect estimate.We synthesized the included studies in the meta-analysis.Results We included 8 cross-sectional studies and 8 cohort studies,all conducted in developing countries.Meta-analysis of 8 studies on PM_(2.5)(particulate matter ≤2.5 μm in diameter)showed that T2DM prevalence was significantly associated with PM_(2.5)exposure(OR=1.12;95%CI:1.07,1.17;P<0.001).The association between air pollutants andT2DM incidence was not estimated due to the limited relevant studies.Conclusions The exposure to PM_(2.5)would be positively associated with an increased prevalence of T2DM in developing countries.Some effective measures should be taken to reduce air pollutant exposure in people who are vulnerable to diabetes.
基金Visiting Scholar Foundation of Key Lab. for the Exploitation of Southwestern Resource & the Environmental Disaster Control Engineering in Chongqing University.
文摘an air cleaner employing pulse induced plasma chemical process to remove dust and carbon monoxide (CO) in road tunnels is presented, which is composed of mainly a precipitator, a reactor, a flow control system, a power supply and a measurement system. Its performances are studied in simulated air conditions. It is found that the rate of dust removal is dependent on the voltage of the pulse power, the distance between the two dust collecting plates of the electrostatic precipitator, the effective length of the precipitator and the air flow rate in the precipitator, and that of CO removal is affected by the voltage and frequency of the super pulse power, the air flow rate in the reactor and the relative humidity of air. Applying such an cleaner of a proper design to the treatment of polluted air at a flow rate of 7 m/s can achieve the rate of dust removal up to 93 % and that of CO removal up to 72.6 %, which efficiently controls the concentrations of CO and dust under allowable limits. It is implied that the proposed air cleaner is a potential solution to air control in road tunnels, and is prominent for its performances and saving the huge cost of longitudinal ventilation tunnel or vertical vent and ventilation facilities.
基金supported by National Natural Science Foundation of China(Grant No.52270106 and 22266021)Yunnan Major Scientific and Technological Projects(grant No.202202AG050005)Yunnan Fundamental Research Projects(grant No.202201AT070116).
文摘The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective manner.In this review,we investigate the development of industrialwaste-based functional materials for various gas pollutant removal and consider the relevant reaction mechanism according to different types of industrial solid waste.We see a recent effort towards achieving high-performance environmental functional materials via chemical or physical modification,in which the active components,pore size,and phase structure can be altered.The review will discuss the potential of using industrial solid wastes,these modified materials,or synthesized materials from raw waste precursors for the removal of air pollutants,including SO_(2),NO_(x),Hg^(0),H_(2)S,VOCs,and CO_(2).The challenges still need to be addressed to realize this potential and the prospects for future research fully.The suggestions for future directions include determining the optimal composition of these materials,calculating the real reaction rate and turnover frequency,developing effective treatment methods,and establishing chemical component databases of raw industrial solid waste for catalysts/adsorbent preparation.
基金This study was supported by the National Natural Science Foundation of China(No.4210070867 and 42130714).
文摘While bird populations are declining,the factors associated with this decline are unclear.Based on laboratory experiments,air pollution has long been recognized as a factor causing oxidative stress and adversely aff ecting bird health.Recently,studies employing an epidemiological approach have reported signifi cant declines in avian populations in Central Europe and the United States due to air pollution,and ozone in particular.We advocate that urgent actions are needed to mitigate these eff ects,which threaten biodiversity and environmental health,and propose a series of measures which can enlighten the path toward mitigating air pollution eff ects on avian populations.
基金supported by grant#201802 of the Japan’s Forestry and Forest Products Research Institute(FFPRI)KAKENHI grant#JP17F17102 of the Japan Society for the Promotion of Science(JSPS)+2 种基金Evgenios Agathokleous was an International Research Fellow(ID No:P17102)the JSPS,and JSPS is a non-profit,independent administrative institutionE.A acknowl-edges multi-year support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science&Technology(NUIST),Nanjing,China(Grant No.003080).
文摘Ground-level ozone(O_(3)) is a widespread air pollutant causing extensive injuries in plants.However,its effects on perennial energy crops remain poorly under-stood due to technical difficulties in cultivating fast-growing shrubs for biomass production under O_(3) treatment on the field.Here we present the results of a two-year evaluation in the framework of which willow(Salix sachalinensis F.Schmid)shrubs were exposed to ambient(AOZ)or elevated(EOZ)O_(3) in two successive growing seasons(2014,2015)and treated with 0(EDU0)or 400 mg L^(−1)(EDU400)eth-ylenediurea spray in the second growing season.In 2014,EOZ altered the chemical composition of both top young and fallen leaves,and a novel mechanism of decreasing Mg in fallen leaves while highly enriching it in young top leaves was revealed in shrubs exposed to EOZ.In 2015,EDU400 alleviated EOZ-induced decreases in leaf fresh mass to dry mass ratio(FM/DM)and leaf mass per area(LMA).While EDU400 protected against EOZ-induced suppression of the maximum rate at which leaves can fix carbon(A_(max))in O_(3)-asymptomatic leaves,it did not alle-viate EOZ-induced suppression of the maximum rates of carboxylation(VCmax)and electron transport(J_(max))and chlorophylls a,b,and a+b in the same type of leaves.In O_(3)-symptomatic leaves,however,EDU400 alleviated EOZ-induced suppression of chlorophylls a and a+b,indicating different mode of action of EDU between O_(3)-asymptomatic and O_(3)-symptomatic leaves.Extensive herbivory occurred only in AOZ-exposed plants,leading to suppressed biomass production,while EOZ also led to a similar suppression of biomass production(EDU0×EOZ vs.EDU400×EOZ).In 2016,carry-over effects were also evaluated following cropping and transplantation into new ambient plots.Effects of EOZ in the preceding growing seasons extended to the third growing season in the form of suppressed ratoon biomass production,indicating carry-over effect of EOZ.Although EDU400 protected against EOZ-induced suppression of biomass production when applied in 2015,there was no carry-over effect of EDU in the absence of EDU treatment in 2016.The results of this study provide novel mechanistic understandings of O_(3)and EDU modes of action and can enlighten cultivation of willow as energy crop.
基金funded by the National Natural Science Foundation of China(31901153,32130068,41801187)Natural Science Foundation of Liaoning Province of China(2020-MS-026)the Youth Innovation Promotion Association CAS(2022195).
文摘Together,the heat island eff ect and air pollution pose a threat to human health and well-being in urban settings.Nature-based solutions such as planting trees are a mitigation strategy to improve outdoor temperatures(thermal comfort)and enhance air quality in urban areas.In this study,outdoor thermal comfort,and particulate matter levels were compared between treeless and treed areas to provide a better understanding of how street trees improve thermal comfort and air quality.Street trees decreased the physiological equivalent temperature from 46.3 to 44.2℃in summer but increased it from 36.4 to 37.5℃in autumn.Air temperature and relative humidity contributed more in summer while wind speed contributed more in autumn.Particulate matter concentrations were negatively correlated with physiological equivalent temperature in summer but not in autumn.The presence of trees decreased concentrations of fi ne particulate matter in hot summer conditions but increased in hot autumn conditions.The presence of trees increased coarse particulate matter in very hot summer conditions in summer and in hot autumn conditions.Overall,the layout of trees in urban street canyons should consider the trade-off between outdoor thermal comfort and air quality improvement.
基金supported by the National Natural Science Foundation of China(Grant Nos.41275037,41275038,and 41275027)
文摘An airborne multi-axis differential optical absorption spectroscopic (AMAX-DOAS) instrument was developed and applied to measure tropospheric NO2 in the Pearl River Delta region in the south of China. By combining the measurements in nadir and zenith directions and analyzing the UV and visible spectral region using the DOAS method, information about tropospheric NO2 vertical columns was obtained. Strong tropospheric NO2 signals were detected when flying over heavilly polluted regions and point sources like plants. The AMAX-DOAS results were compared with ground-based MAX-DOAS observations in the southwest of Zhuhai city using the same parameters for radiative transport calculations. The difference in vertical column data between the two instruments is about 8%. Our data were also compared with those from OMI and fair agreement was obtained with a correlation coefficient R of 0.61. The difference between the two instruments can be attributed to the different spatial resolution and the temporal mismatch during the measurements.
文摘This paper presents a one-dimensional unsteady flow model and a numerical procedure based on the model. Comparisons between the theory and full scale experiments in a railway tunnel show that the model is capable of produce precise predictions for piston wind and pollutant concentration in railway tunnels.
基金supported by the National Natural Science Foundation of China(21906090)the National Key Research and Development Program(2017YFC0210200,2017YFC0212800)Primary Research&Development Project of Shandong Province(2018GSF117034,2019JZZY020305).
文摘Activated red mud(RM)has been proved to be a promising base material for the selective catalysis reduction(SCR)of NOx.The inherent low reducibility and acidity limited its low-temperature activity.In this work,molybdenum oxide,tungsten oxide,and cerium oxide were used to reconfigure the redox sites and acid sites of red mud based catalyst.When activated red mud was reconfigured by cerium-tungsten oxide(Ce-W@RM),the NOx conversion kept above 90%at 219-480℃.The existence of Ce^(3+)/Ce^(4+) redox electron pairs provided more surface adsorbed oxygen(O_(α)) and served as a redox cycle.Positive interactions between Ce,W species and Fe oxide in red mud occurred,which led to the formation of unsaturated chemical bond and promoted the activation of adsorbed NH_(3) species.WO_(3) and Ce_(2)(WO_(4))_(3)(formed by solid-state reaction between Ce and W species)could provide more Brønsted acid sites(W-O modes of WO_(3),W=O or W-O-W modes of Ce_(2)(WO_(4))_(3)).CeO_(2) species could provide more Lewis acid sites.The Langmuir-Hinshelwood(L-H)routes and Eley-Rideal(E-R)routes occurred in the low-temperature SCR reaction on the Ce-W@RM surface.NH_(4)^(+) species on Brønsted acid sites,NH_(3) species on Lewis acid sites,bidentate nitrate and bridging nitrate species were key active intermediates species.
基金UK FCO GOF(PGI GCC 000012) and Chongqing Small town Programme (CSTC-2004AA7008)
文摘Chongqing is the largest municipality under the Chinese Central Government (MCG) in terms of administrative area and population and is now the most important economic and cultural center of the upper Yangtze River and Three Gorges area. The Three Gorges Dam project, one of the largest world infrastructure projects, causes a great deal of immigration to Chongqing and results in the rapid urbanization of the city, and it has brought in a great deal of environmental impact, which is a global concerned issue. This paper introduces the city profile of Chongqing municipality and its urbanization impact on energy and environment. The demand and the trend of energy consumption in built environment (building and transport) have been analysed. The living environment of Chongqing residents and the local energy efficient policy have been introduced. Finally the authors discuss the key issues of the sustainable urban development of Chongqing.
基金supported by the National Natural Science Foundation of China(NSFC)(No.4210070867)the Foreign Young Talents Fund of the National Ministry of Science and Technology,China(No.31950410547)+1 种基金The Startup Foundation for Introducing Talent of Nanjing University of Information Science&Technology(NUIST),Nanjing,China(No.003080)the Jiangsu Distinguished Professor program of the People’s Government of Jiangsu Province,China.
文摘Ground-level ozone(O_(3)) aff ects vegetation and threatens environmental health when levels exceed critical values,above which adverse eff ects are expected.Cyprus is expected to be a hotspot for O_(3)concentrations due to its unique position in the eastern Mediterranean,receiving air masses from Europe,African,and Asian continents,and experiencing a warm Mediterranean climate.In Cyprus,the spatiotemporal features of O_(3) are poorly understood and the potential risks for forest health have not been explored.We evaluated O_(3) and nitrogen oxides(NO and NO 2)at four regional background stations at different altitudes over 2014−2016.O_(3) risks to vegetation and human health were estimated by calculating accumulated O_(3)exposure over a threshold of 40 nmol mol^(−1)(AOT40)and cumulative exposure to mixing ratios above 35 nmol mol^(−1)(SOMO35)indices.The data reveal that mean O_(3)concentrations follow a seasonal pattern,with higher levels in spring(51.8 nmol mol^(−1))and summer(53.2 nmol mol^(−1))and lower levels in autumn(46.9 nmol mol^(−1))and winter(43.3 nmol mol^(−1)).The highest mean O_(3)exposure(59.5 nmol mol^(−1)) in summer occurred at the high elevation station Mt.Troodos(1819 m a.s.l.).Increasing(decreasing)altitudinal gradients were found for O_(3)(NO x),driven by summer–winter diff erences.The diurnal patterns of O_(3) showed little variation.Only at the lowest altitude O_(3) displayed a typical O_(3) diurnal pattern,with hourly diff erences smaller than 15 nmol mol^(−1).Accumulated O_(3) exposures at all stations and in all years exceeded the European Union’s limits for the protection of vegetation,with average values of 3-month(limit:3000 nmol mol^(−1)h)and 6-month(limit:5000 nmol mol^(−1)h)AOT40 for crops and forests of 16,564 and 31,836 nmol mol^(−1)h,respectively.O_(3) exposures were considerably high for human health,with an average SOMO35 value of 7270 nmol mol^(−1) days across stations and years.The results indicate that O_(3) is a major environmental and public health issue in Cyprus,and policies must be adopted to mitigate O_(3) precursor emissions at local and regional scales.
基金the National Natural Science Foundation of China(41877518)the Key Special Program of Logistic Scientific Research of PLA(BLJ18J005)the Key Support Objects of Excellent Talent Pool of Military Medical University。
文摘The potential association between medical resources and the proportion of oldest-old(90 years of age and above)in the Chinese population was examined,and we found that the higher proportion of oldest-old was associated with the higher number of beds in hospitals and health centers.
基金supported in part by Research Grant#201802 of the Forestry and Forest Products Research Instituteby KAKENHI Grant Number JP17F17102 of the Japan Society for the Promotion of Science(JSPS)。
文摘Japanese larch(Larix kaempferi(Lamb.)Carr.)and its hybrid are economically important coniferous trees widely grown in the Northern Hemisphere.Ground-level ozone(O_(3))concentrations have increased since the preindustrial era,and research projects showed that Japanese larch is susceptible to elevated O_(3)exposures.Therefore,methodologies are needed to(1)protect Japanese larch against O_(3)damage and(2)conduct biomonitoring of O_(3)in Japanese larch forests and,thus,monitor O_(3)risks to Japanese larch.For the first time,this study evaluates whether the synthetic chemical ethylenediurea(EDU)can protect Japanese larch against O_(3)damage,in two independent experiments.In the first experiment,seedling communities,simulating natural regeneration,were treated with EDU(0,100,200,and 400 mg L^(-1))and exposed to either ambient or elevated O_(3)in a growing season.In the second experiment,individually-grown saplings were treated with EDU(0,200 and 400 mg L-1)and exposed to ambient O_(3)in two growing seasons and to elevated O_(3)in the succeeding two growing seasons.The two experiments revealed that EDU concentrations of 200-400 mg L^(-1)could protect Japanese larch seedling communities and individual saplings against O_(3)-induced inhibition of growth and productivity.However,EDU concentrations≤200 mg L^(-1)did offer only partial protection when seedling communities were coping with higher level of O_(3)-induced stress,and only 400 mg EDU L^(-1)fully protected communities under higher stress.Therefore,we conclude that among the concentrations tested the concentration offering maximum protection to Japanese larch plants under high competition and O_(3)-induced stress is that of 400 mg EDU L^(-1).The results of this study can provide a valuable resource of information for applied forestry in an O_(3)-polluted world.
基金partly supported by grant#201802 of the Japan’s Forestry and Forest Products Research Institute(FFPRI)KAKENHI grant#JP17F17102 of the Japan Society for the Promotion of Science(JSPS).E.A.support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science&Technology(NUIST),Nanjing,China(Grant No.003080)。
文摘Ground-level ozone(O_(3))pollution is a persistent environmental issue that can lead to adverse effects on trees and wood production,thus indicating a need for forestry interventions to mediate O_(3) effects.We treated hybrid larch(Larix gmelinii var.japonica×L.kaempferi)saplings grown in nutrient-poor soils with 0 or 400 mg L^(-1) water solutions of the antiozonant ethylenediurea(EDU0,EDU400)and exposed them to ambient O_(3)(AOZ;08:00-18:00≈30 nmol mol^(-1)) or elevated O_(3)(EOZ;08:00-18:00≈60 nmol mol^(-1))over three growing seasons.We found that EDU400 protected saplings against most effects of EOZ,which included extensive visible foliar injury,premature senescence,decreased photosynthetic pigment contents and altered balance between pigments,suppressed gas exchange and biomass production,and impaired leaf litter decay.While EOZ had limited effects on plant growth(suppressed stem diameter),it decreased the total number of buds per plant,an effect that was not observed in the first growing season.These results indicate that responses to EOZ might have implications to plant competitiveness,in the long term,as a result of decreased potential for vegetative growth.However,when buds were standardized per unit of branches biomass,EOZ significantly increased the number of buds per unit of biomass,suggesting a potentially increased investment to bud development,in an effort to enhance growth potential and competitiveness in the next growing season.EDU400 minimized most of these effects of EOZ,significantly enhancing plant health under O_(3)-induced stress.The effect of EDU was attributed mainly to a biochemical mode of action.Therefore,hybrid larch,which is superior to its parents,can be significantly improved by EDU under long-term elevated O_(3) exposure,providing a perspective for enhancing afforestation practices.
基金supported by the National Natural Science Foundation of China(NSFC)(No.4210070867)The Startup Foundation forIntroducing Talent(No.003080)of Nanjing University of Information Science&Technology(NUIST),Nanjing,China+2 种基金the Jiangsu Distinguished Professor Program of the People s Government of Jiangsu Province,Chinathe Foreign 1000 Young Talents Program Fund(No.31950410547)of the NationalMinistry of Science and Technology,Chinathe project URBFLUX(PID2021-125941OB-I00,MINECO-FEDER)。
文摘Abstarct In recognition of the rising threats of groundlevel ozone(O_(3))pollution to forests,agricultural crops,and other types of vegetation,accurate and realistic risk assessment is urgently needed.The accumulated O_(3)exposure over a concentration threshold of 40 nmol mol-1(AOT40)is the most commonly used metric to investigate O3 exposure and its effects on vegetation and to conduct vegetation risk assessment.It is also used by international regulatory authorities for deriving critical levels and setting standards to protect vegetation against surface O_(3).However,fixed periods of the growing season are used universally,yet growing seasons vary with latitudes and elevations,and the periods of plant lifespan also differ among annual species.Here,we propose the concept of the Annual O_(3)Spectrum Profile(AO_(3)SP)and apply it to calculate the profile of AOT40 throughout the year(AAOT40SP,Annual AOT40 Spectrum Profile)using the International Organization for Standardization(ISO)weeks as a shorter window ISO-based accumulated exposure.Using moving time periods of three(for crops)or six(for forests)months,the i so AOT40 behavior throughout the year can be examined as a diagnostic tool for O_(3)risks in the short-or long-term during the lifecycle of local vegetation.From this analysis,AOT40(i so AOT40)that is most representative for the local conditions and specific situations can be identified,depending on the exact growing season and lifecycle of the target vegetation.We applied this novel approach to data from five background monitoring stations located at different elevations in Cyprus.Our results show that the AAOT40SP approach can be used for improved and more realistic assessment of O3 risks to vegetation.The AO_(3)SP approach can also be applied using metrics other than AOT40(exposure-or flux-based),adding a new dimension to the way O_(3)risk to vegetation is assessed.
基金co-sponsored by the National Natural Science Foundation of China (71774095, 71690244 and 71673165)the Postdoctoral Science Foundation of China (2017M610096)the International Science and Technology Cooperation Program of China (2016YFE0102200)
文摘This study develops a bottom-up model to quantitatively assess the comprehensive effects of replacing traditional petroleum-powered vehicles with natural gas vehicles(NGVs) in China based on an investigation of the direct energy consumption and critical air pollutant(CAP) emission intensity, life-cycle energy use and greenhouse gas(GHG) emission intensity of NGV fleets. The results indicate that, on average, there are no net energy savings from replacing a traditional fuel vehicle with an NGV. Interestingly, an NGV results in significant reductions in direct CAP and life-cycle GHG emissions compared to those of a traditional fuel vehicle, ranging from 61% to 76% and 12% to 29%, respectively. Due to the increasing use of natural gas as a vehicle fuel in China(i.e. approximately 28.2 billion cubic metres of natural gas in2015), the total petroleum substituted with natural gas was approximately 23.8 million tonnes(Mt), which generated a GHG emission reduction of 16.9 Mt of CO2 equivalent and a CAP emission reduction of 1.8 Mt in 2015. Given the significant contribution of NGVs, growing the NGV population in 2020 will further increase the petroleum substitution benefits and CAP and GHG emission reduction benefits by approximately 42.5 Mt of petroleum-based fuel, 3.1 Mt of CAPs and 28.0 Mt of GHGs. By 2030, these benefits will reach 81.5 Mt of traditional petroleum fuel, 5.6 Mt of CAPs and 50.5 Mt of GHGs, respectively.
文摘https://www.sciencedirect.com/journal/building-and-environment/vol/172/suppl/C Volume 172,April 2020(1)City-scale single family residential building energy consumption prediction using genetic algorithm-based Numerical Moment Matching technique,by Elham Jahani,Kristen Cetin,In Ho Cho,Article 106667Abstract:Grow ing energy consumption in urban areas has increased the importance of planning for future energy systems.