期刊文献+
共找到89篇文章
< 1 2 5 >
每页显示 20 50 100
Network Intrusion Detection Model Based on Ensemble of Denoising Adversarial Autoencoder 被引量:1
1
作者 KE Rui XING Bin +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期185-194,218,共11页
Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research si... Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance. 展开更多
关键词 Intrusion detection Noise-Reducing autoencoder Generative adversarial networks Integrated learning
在线阅读 下载PDF
基于三重生成对抗的多维时间序列异常检测 被引量:1
2
作者 霍纬纲 吴艺凝 《计算机工程与设计》 北大核心 2025年第5期1304-1310,共7页
为有效解决多维时间序列(multivariate time series, MTS)无监督异常检测模型中自编码器模块容易拟合异常样本、正常MTS样本对应的隐空间特征可能被重构为异常MTS的问题,设计一种具有三重生成对抗的MTS异常检测模型。以LSTM自编码器为... 为有效解决多维时间序列(multivariate time series, MTS)无监督异常检测模型中自编码器模块容易拟合异常样本、正常MTS样本对应的隐空间特征可能被重构为异常MTS的问题,设计一种具有三重生成对抗的MTS异常检测模型。以LSTM自编码器为生成器,基于重构误差生成伪标签,由判别器区分经伪标签过滤后的重构MTS和原始MTS;采用两次对抗训练将LSTM自编码器的隐空间约束为均匀分布,减少LSTM自编码器隐空间特征重构出异常MTS的可能性。多个公开MTS数据集上的实验结果表明,T-GAN能在带有污染数据的训练集上更好学习正常MTS分布,取得较高的异常检测效果。 展开更多
关键词 异常检测 生成对抗 多维时间序列 自编码器 长短期记忆网络 伪标签 污染数据
在线阅读 下载PDF
基于改进GAN的图像去雨方法及其在车辆检测上的应用
3
作者 应保胜 刘畅然 +2 位作者 熊豪 石兵华 许小伟 《计算机应用与软件》 北大核心 2025年第3期183-189,共7页
针对雨天行车时,车载摄像头拍摄的图像被镜头前的雨滴或者空中的雨线条纹所遮挡,影响车辆检测的准确度的问题,使用先去雨后检测的思路,提出一种基于改进的生成对抗网络(Generative Adversarial Networks,GAN)图像去雨方法。该方法在GAN... 针对雨天行车时,车载摄像头拍摄的图像被镜头前的雨滴或者空中的雨线条纹所遮挡,影响车辆检测的准确度的问题,使用先去雨后检测的思路,提出一种基于改进的生成对抗网络(Generative Adversarial Networks,GAN)图像去雨方法。该方法在GAN的生成网络中加入注意力模块,并在patch-GAN判别网络中加入一层卷积,提取注意力掩码图,进行局部鉴别,提升去雨效果并保留图像细节。对图像进行去雨处理后,再使用YOLOv4算法对去雨后图像进行车辆检测。实验使用多种数据集将该方法与其他方法进行对比实验,结果表明该方法有良好的去雨效果,并能有效提高雨天车辆检测准确率。 展开更多
关键词 图像去雨 生成对抗网络 注意力模块 自编码器 车辆检测
在线阅读 下载PDF
基于改进GAN的人机交互手势行为识别方法
4
作者 张富强 白筠妍 穆慧 《郑州大学学报(工学版)》 北大核心 2025年第2期43-50,共8页
为改善现有手势识别算法需要大量训练数据的现状,针对识别准确率不高、识别过程复杂等问题,基于生成式对抗网络(GAN)和变分自编码器,引入标签信息,提出一种基于改进GAN模型的人机交互手势行为识别方法。首先,在编码器和解码器中分别添... 为改善现有手势识别算法需要大量训练数据的现状,针对识别准确率不高、识别过程复杂等问题,基于生成式对抗网络(GAN)和变分自编码器,引入标签信息,提出一种基于改进GAN模型的人机交互手势行为识别方法。首先,在编码器和解码器中分别添加改进InceptionV2和InceptionV2-trans结构增强模型的特征还原能力;其次,在各组成网络中进行条件批量归一化(CBN)处理改善过拟合,以Mish激活函数代替ReLU函数提升网络性能;最后,通过实验证明该方法能够以较少的样本获得100%的分类准确率,且收敛时间短,验证了该方法的可靠性。 展开更多
关键词 人机交互 生成对抗网络 变分自编码器 手势识别 条件批量归一化
在线阅读 下载PDF
基于FIML和DAE的水稻种质资源数据自适应填充算法设计
5
作者 李艳玲 韩茹菲 +3 位作者 苏楠 李飞涛 FERNANDO Bacao 司海平 《河南农业大学学报》 北大核心 2025年第2期316-325,共10页
【目的】设计一种基于FIML和DAE的填充缺失值的方法,即聚类全信息选择性过滤编码器数据填补算法(clustering-based comprehensive information selective filtering encoder data imputation algorithm,CFSM-DAE),为水稻种质资源缺失数... 【目的】设计一种基于FIML和DAE的填充缺失值的方法,即聚类全信息选择性过滤编码器数据填补算法(clustering-based comprehensive information selective filtering encoder data imputation algorithm,CFSM-DAE),为水稻种质资源缺失数据进行填充。【方法】利用聚类辅助避免数据异常值对算法的影响,采用选择性过滤层用于识别高质量估算、减少低质量估算的影响。传统的DAE框架通常没有选择性过滤层,所有的估算值都被视为同等重要,无法区分高质量和低质量的估算值。为了进一步提高估算精度,研究采用集成框架将全信息最大似然性(FIML)与多对抗性自编码器(DAE)结合的方法(CFSM-DAE),在选择性过滤层基础上,自适应填充,即当估算值不符合设定阈值时,采用FIML填充策略以确保填充结果的稳定性和精确度,从而进一步来提高整体估算精度。在3种缺失数据机制(随机缺失(MAR)、完全随机缺失(MCAR)和非随机缺失(MNAR))下对模拟数据和实际水稻种质资源数据集进行研究,将CFSM-DAE方法与多种常用填充算法比较(全信息最大似然性(FIML)、对抗自编码器(DAE)、K近邻填充(KNN)、随机森林(RF)、链式方程多重插补(MICE))。【结果】CFSM-DAE在模拟数据上的表现为S_(RME)=0.0676,E_(MA)=0.0093,R^(2)=0.9958;在水稻种质资源数据上的表现为S_(RME)=0.0395,E_(MA)=0.0078,R^(2)=0.8913。相比之下,其他算法如DAE在这两类数据下的SRME表现分别为0.8896和0.7707;KNN算法的EMA表现分别为0.1183和0.1305;FIML算法的R2表现为0.3382和0.7321。因此,CFSM-DAE在多个评价指标上相较于其他算法都表现出了一定的提升,CFSM-DAE在模拟数据和水稻种质资源数据的表现优于其他算法。【结论】CFSM-DAE方法通过结合聚类、选择性过滤和全信息最大似然性等策略,显著提高了水稻种质资源数据中缺失值的填补精度,展示了其在处理复杂缺失值问题上的有效性和潜力。 展开更多
关键词 水稻种质资源 聚类 全信息最大似然性 对抗性自编码器 选择性过滤层 数据缺失
在线阅读 下载PDF
基于ADS-B多特征迁移学习的GNSS干扰检测方法
6
作者 陈敏 李昊宇 +1 位作者 何炜琨 吴仁彪 《信号处理》 北大核心 2025年第7期1241-1254,共14页
全球导航卫星系统(Global Navigation Satellite System,GNSS)是现代航空系统的重要基础,其极易受到射频干扰,这可能导致航班备降、复飞或进近中止等情形,对航空安全造成严重影响。广播式自动相关监视(Automatic Dependent Surveillance... 全球导航卫星系统(Global Navigation Satellite System,GNSS)是现代航空系统的重要基础,其极易受到射频干扰,这可能导致航班备降、复飞或进近中止等情形,对航空安全造成严重影响。广播式自动相关监视(Automatic Dependent Surveillance-Broadcast,ADS-B)依赖于GNSS获取飞机位置信息,当GNSS受到射频干扰时,ADS-B的可用性也会受到影响。基于ADS-B数据来进行GNSS干扰检测成为一种可行的解决方案。针对现有基于ADS-B数据的GNSS干扰检测模型存在无法兼容多个ADS-B版本,难以适应我国国情的问题,以GNSS干扰事件中的ADS-B数据为研究对象,分析其在干扰条件下的特点,包括航迹波动和导航质量指标的变化特性。引入滑动窗口技术,动态计算统计特征并扩展特征维度,以更全面准确地反映干扰影响;提出了一种结合长短期记忆网络自编码器(Long Short-Term Memory-AutoEncoder,LSTM-AE)与领域对抗神经网络(Domain Adversarial Neural Network,DANN)的GNSS干扰检测方法。该方法通过LSTM-AE提取不同版本ADS-B的特征,并将其映射到同一个特征空间,提供一致的特征表示;采用DANN网络实现对DO-260A/B版本ADS-B数据(源域)中GNSS干扰的检测,并借助DANN的迁移学习能力,使其适应于DO-260版本的ADS-B数据(目标域),从而实现跨版本的高效检测。实验结果表明,所提出的LSTM-AE-DANN模型在DO-260、DO-260A/B版本的ADS-B数据集上均表现出优秀的检测性能和更强的适用性,适合我国国情,具有显著的实用价值。 展开更多
关键词 全球导航卫星系统干扰检测 广播式自动相关监视 长短期记忆自编码器 领域对抗神经网络 迁移学习 航空安全
在线阅读 下载PDF
特征感知变换自编码器防御模型偏斜式投毒攻击
7
作者 罗文华 杨立圣 张鹏 《小型微型计算机系统》 北大核心 2025年第8期2033-2040,共8页
流量分类模型更新易受数据投毒攻击,现有模型偏斜式投毒攻击防御方法聚焦特征固定的图像分类任务,面对特征复杂的流量分类问题适用性有限.针对上述问题,设计少特征攻击的投影梯度下降法,生成对抗样本进行偏斜式投毒攻击;提出特征感知变... 流量分类模型更新易受数据投毒攻击,现有模型偏斜式投毒攻击防御方法聚焦特征固定的图像分类任务,面对特征复杂的流量分类问题适用性有限.针对上述问题,设计少特征攻击的投影梯度下降法,生成对抗样本进行偏斜式投毒攻击;提出特征感知变换自编码器的模型偏斜式投毒防御方法,在自编码器训练阶段引入特征感知噪声扰动,以限制扰动范围并增强自编码器对抗样本噪声过滤能力.通过构建流量数据变换自编码器重构并消除对抗样本的对抗性,利用变换后的样本数据与原始数据进行预测差异性判定,实现对抗样本判别过滤.实验结果表明,该方法能够有效识别新增训练样本中的对抗样本,降低偏斜式数据投毒攻击对流量分类模型的负面影响. 展开更多
关键词 数据投毒攻击 流量分类模型 对抗样本 自编码器
在线阅读 下载PDF
计及小概率场景能源管线风险的综合能源系统多目标扩展规划
8
作者 黄南天 赵暄远 +1 位作者 蔡国伟 郭玉 《电气工程学报》 北大核心 2025年第1期197-207,共11页
随着能源系统不断转型及新型负荷的快速发展,在极端高温及极端低温等小概率用能场景下,需求侧用能行为日渐复杂,综合能源系统安全稳定运行风险逐渐提升。因此,提出计及小概率高用能场景下能源管线超负荷运行风险的综合能源系统多目标扩... 随着能源系统不断转型及新型负荷的快速发展,在极端高温及极端低温等小概率用能场景下,需求侧用能行为日渐复杂,综合能源系统安全稳定运行风险逐渐提升。因此,提出计及小概率高用能场景下能源管线超负荷运行风险的综合能源系统多目标扩展规划方法。建立基于耦合对抗变分自编码器的场景生成模型,生成冷-热-电-气负荷场景,获取典型场景与小概率高用能场景;在此基础上,以系统扩展规划成本最低及小概率高用能场景能源管线风险最低为目标,建立计及小概率高用能场景的冷-热-电-气综合能源系统扩展规划模型;采用改进麻雀搜索优化算法进行算例求解,实现冷-热-电-气综合能源系统扩展规划,提升综合能源系统扩展规划经济性与运行可靠性。 展开更多
关键词 综合能源系统 扩展规划 小概率高用能场景 耦合对抗变分自编码器 改进麻雀搜索优化算法
在线阅读 下载PDF
视图映射和循环一致性生成的不完整多视图聚类
9
作者 王英博 郭凯雪 《智能系统学报》 北大核心 2025年第2期316-328,共13页
传统聚类假设每个视图都完整,没有考虑数据损坏、设备故障导致的不完整视图情况。针对此问题,已有方法大多基于核和非负矩阵分解提出,没有明确补偿每个视图丢失的数据,学习的潜在表示也没有考虑聚类任务。为此设计视图映射和循环一致性... 传统聚类假设每个视图都完整,没有考虑数据损坏、设备故障导致的不完整视图情况。针对此问题,已有方法大多基于核和非负矩阵分解提出,没有明确补偿每个视图丢失的数据,学习的潜在表示也没有考虑聚类任务。为此设计视图映射和循环一致性生成的不完整多视图聚类(incomplete multi-view clustering generated by view mapping and cyclic consistency,MG_IMC),利用已有数据信息得到各视图的风格编码和共享潜在表示,并通过生成对抗网络生成缺失的数据,在完整数据集上利用加权自适应融合捕获更好的通用结构,并在深度嵌入聚类层完成聚类任务。使用KL散度(Kullback-Leibler divergence)联合训练模型,学习的公共表示有助于生成缺失的数据,而补全的数据进一步生成聚类友好的公共表示。实验表明,相比已有方法,该算法得到更好的聚类效果。 展开更多
关键词 数据挖掘 聚类 多视图学习 不完全多视图聚类 深度学习 自动编码器 生成对抗性网络 KL散度
在线阅读 下载PDF
基于自编码器GAN数据增强的工业小目标缺陷检测 被引量:2
10
作者 周思聪 向峰 +1 位作者 李红军 左颖 《现代制造工程》 北大核心 2025年第2期101-108,共8页
工业缺陷图像样本是工业产品缺陷检测、分类和分级的基础数据。针对工业缺陷检测目前仍存在复杂环境下的目标检测困难、样本数量不足导致特征提取差等问题,提出了一种预训练的自编码器生成对抗网络。用预训练的自编码器代替基础生成对... 工业缺陷图像样本是工业产品缺陷检测、分类和分级的基础数据。针对工业缺陷检测目前仍存在复杂环境下的目标检测困难、样本数量不足导致特征提取差等问题,提出了一种预训练的自编码器生成对抗网络。用预训练的自编码器代替基础生成对抗网络(GAN)的生成网络,引导生成网络更好地融合数据特征。结合目标图像的特征重新设计一个编码器-解码器损失函数来替换GAN的对抗损失函数。利用钢卷端面缺陷数据集进行试验。试验结果表明,经过改进GAN数据增强后,平均精度均值mAP0.5最高提升了0.118,对单类缺陷的检测准确率最高提升了0.138。 展开更多
关键词 生成对抗网络 工业图像生成 预训练自编码器 缺陷检测
在线阅读 下载PDF
基于SAE和WGAN的入侵检测方法研究 被引量:2
11
作者 刘拥民 许成 +2 位作者 黄浩 张钱垒 赵俊杰 《计算机工程与科学》 北大核心 2025年第2期256-264,共9页
近年来,机器学习和深度学习(ML/DL)领域技术飞速发展,将其应用到IDS中的研究也越来越多。但是,目前入侵检测领域的数据集存在特征冗余和攻击分类样本数量不平衡的问题。针对上述问题,提出基于自编码器SAE和生成对抗网络WGAN的网络异常... 近年来,机器学习和深度学习(ML/DL)领域技术飞速发展,将其应用到IDS中的研究也越来越多。但是,目前入侵检测领域的数据集存在特征冗余和攻击分类样本数量不平衡的问题。针对上述问题,提出基于自编码器SAE和生成对抗网络WGAN的网络异常检测方法。首先,针对特征冗余问题,使用堆叠自编码器的编码-隐层-解码思想进行数据降维,细化各类特征,提取更适用于分类的低维度特征。其次,针对样本不平衡(数据量少、种类不多的)问题,将处理过的数据作为生成器的来源输入到WGAN模型中,利用生成对抗网络的生成功能进行样本扩充,弥补分类模型训练过程中某些类型样本数据不足的问题,最终通过RF分类模型进行检测。在数据集NSL-KDD上的实验结果表明,基于本文方法建立的模型SAE-WGAN-RF的F 1-Score为95.58%,Recall为96.54%,Precision为96.03%,相比常见的经典算法的性能有显著提高。 展开更多
关键词 深度学习 生成对抗网络 异常检测 栈式自编码器
在线阅读 下载PDF
基于半监督学习双模型结构的注塑产品异常检测 被引量:1
12
作者 陈昱 项薇 +3 位作者 林文文 龚川 张怀志 虞任豪 《中国机械工程》 北大核心 2025年第3期576-583,共8页
质量数据分布的不平衡及分类边界的模糊性限制了传统分类器的性能,阻碍了企业智能生产决策的高效实施。为此,提出了一种基于双模型结构的深度生成模型异常检测方法,根据尺寸数据分布将合格产品等级进行二分类,即优秀及次优,分别用于训... 质量数据分布的不平衡及分类边界的模糊性限制了传统分类器的性能,阻碍了企业智能生产决策的高效实施。为此,提出了一种基于双模型结构的深度生成模型异常检测方法,根据尺寸数据分布将合格产品等级进行二分类,即优秀及次优,分别用于训练两个深度生成模型,考虑数据分布特点设计加权集成,基于计算的异常分数对产品进行合格性判定。以变分自编码器(VAE)、Wasserstein生成对抗网络(WGAN)为子模型开发了两个双模型结构,测试结果显示,相较于单模型结构,基于双模型的VAE和WGAN在测试集上的分类准确率分别提高了4.5%和6%。 展开更多
关键词 产品质量 异常检测 变分自编码器 Wasserstein生成对抗网络 双模型结构
在线阅读 下载PDF
基于VAE-EGAN架构的地震脉冲干扰异常检测
13
作者 严英殊 余贞侠 +2 位作者 文晓涛 王秋成 文武 《西安石油大学学报(自然科学版)》 北大核心 2025年第3期1-11,共11页
在地震勘探采集现场,脉冲信号作为一种干扰,严重影响地震采集记录的品质,是地震采集现场重点监控的干扰对象。为准确检测脉冲信号,减少地震脉冲信号对后续地震数据处理和解释的影响,提出一种基于VAE-EGAN架构的异常检测方法。该方法结... 在地震勘探采集现场,脉冲信号作为一种干扰,严重影响地震采集记录的品质,是地震采集现场重点监控的干扰对象。为准确检测脉冲信号,减少地震脉冲信号对后续地震数据处理和解释的影响,提出一种基于VAE-EGAN架构的异常检测方法。该方法结合变分自编码器VAE的生成稳定性与生成对抗网络GAN的判别能力,通过权值衰减和谱归一化技术降低模型过拟合的可能。新设计的损失函数结合多个判别器的独特结构,提高了GAN在异常捕捉任务上的竞争力。西部某工区实际地震数据的实验结果表明,该方法的异常检测准确率和F1值分别达到93.75%和96.77%,异常定位准确率和F1值分别达到89.82%和92.73%。实验结果验证了该方法在提升脉冲信号异常检测精度方面的有效性,降低了地震数据处理中脉冲信号检测的复杂性,有助于保障地震数据的准确性。 展开更多
关键词 地震脉冲 异常检测 生成对抗网络 变分自编码器
在线阅读 下载PDF
深度生成式故障诊断模型研究 被引量:2
14
作者 黄汉坤 岑健 +3 位作者 赵必创 司伟伟 王玮樾 潘黄楠 《机床与液压》 北大核心 2025年第4期205-213,共9页
深度生成模型因强大的生成能力而备受关注。随着研究的深入,深度生成模型成功应用于故障诊断领域,并取得良好的效果。系统介绍传统深度生成式模型受限玻尔兹曼机以及目前主流的深度生成式模型生成对抗网络和变分自编码器;对生成对抗网... 深度生成模型因强大的生成能力而备受关注。随着研究的深入,深度生成模型成功应用于故障诊断领域,并取得良好的效果。系统介绍传统深度生成式模型受限玻尔兹曼机以及目前主流的深度生成式模型生成对抗网络和变分自编码器;对生成对抗网络典型变体进行分类和梳理,包括基于模型结构改进和基于损失函数改进。同时,将变分自编码器典型变体分为无监督VAE和有监督VAE,并进行系统总结。最后,从样本问题、模型泛化能力、构建新模型3个角度探讨了现有深度生成式模型面临的挑战,并提出未来的研究方向。 展开更多
关键词 故障诊断 深度生成式模型 生成对抗网络 变分自编码器
在线阅读 下载PDF
基于对抗自编码器和自适应阈值的滚动轴承故障预警方法
15
作者 李涛 田宏业 +1 位作者 陶沙 刘朋 《船舶力学》 北大核心 2025年第1期110-122,共13页
针对目前工程实际中故障预警存在敏感特征组合构建困难、完备的故障样本稀缺和预警阈值设定不准确等难题,提出一种基于对抗自编码器(AAE)和自适应阈值的滚动轴承故障预警方法。将预处理后的正常样本频谱数据作为AAE训练数据进行自编码... 针对目前工程实际中故障预警存在敏感特征组合构建困难、完备的故障样本稀缺和预警阈值设定不准确等难题,提出一种基于对抗自编码器(AAE)和自适应阈值的滚动轴承故障预警方法。将预处理后的正常样本频谱数据作为AAE训练数据进行自编码器网络和对抗网络训练,并计算自编码器重构误差和保留编码网络;利用编码器逐层提取服从先验分布的低维特征,结合重构误差和相似性度量构建健康指标,并基于贝塔分布进行健康指标概率密度分布拟合以自适应确定阈值;将测试数据经相同步骤处理后与阈值比较,判别异常。利用两类滚动轴承数据集验证所提方法,试验结果表明所提方法具有优异的故障预警性能和自适应性,能够实现早期微弱故障预警。 展开更多
关键词 滚动轴承 故障预警 对抗自编码 健康指标 贝塔分布 自适应阈值
在线阅读 下载PDF
基于SRGAN-DAE的室内定位指纹生成
16
作者 吕博 周蓉 +1 位作者 张甜愉 浦梦杨 《电子测量技术》 北大核心 2025年第3期154-160,共7页
基于WiFi指纹数据库的室内定位技术因其高精度和易于部署的特点而备受关注,而离线指纹数据库的质量则是决定定位精度的关键因素。针对离线指纹数据库采集成本高的问题,提出了一种基于降噪自编码器超分辨率生成对抗网络的降噪指纹数据库... 基于WiFi指纹数据库的室内定位技术因其高精度和易于部署的特点而备受关注,而离线指纹数据库的质量则是决定定位精度的关键因素。针对离线指纹数据库采集成本高的问题,提出了一种基于降噪自编码器超分辨率生成对抗网络的降噪指纹数据库增强模型(FASRGAN-DAE)。该方法通过增强稀疏指纹数据库,提高定位精度。具体而言,首先将指纹数据映射为相应的指纹图像;接着,生成器网络在删除批量归一化层(BN层)的基础上改进感知损失函数,生成高分辨率指纹图像,并通过降噪自编码器的隐藏层和输出层,以提高生成图像的质量,同时在判别器网络中,删除BN层并采用卷积层的输出作为输入图像的真实性评分,利用均方差损失函数优化判别器网络,以增强对真实和生成图像的区分能力;最终,通过映射模块将指纹图像还原为指纹数据,实现指纹数据库的增强。通过在真实地下停车场环境中进行定位实验,与原始指纹数据库相比,FASRGAN-DAE增强数据后将平均定位误差降低了5.69%。 展开更多
关键词 室内定位 超分辨率生成对抗网络 降噪自编码器 指纹数据库 数据增强
在线阅读 下载PDF
融合过-欠采样与GAN的网络入侵检测方法
17
作者 王秀玉 吴晓鸰 冯永晋 《小型微型计算机系统》 北大核心 2025年第2期449-455,共7页
随着互联网技术的发展,网络数据流量每秒激增,伴随而来更多的安全问题.针对网络入侵数据集类不平衡和数据维度高导致的分类不准确问题,本文提出一种融合过-欠采样和GAN的网络入侵检测方法.采用随机欠采样减少多数类样本数量,以避免欠拟... 随着互联网技术的发展,网络数据流量每秒激增,伴随而来更多的安全问题.针对网络入侵数据集类不平衡和数据维度高导致的分类不准确问题,本文提出一种融合过-欠采样和GAN的网络入侵检测方法.采用随机欠采样减少多数类样本数量,以避免欠拟合问题.同时,通过合成少数类过采样技术合成少数类样本,以降低类不平衡所带来的影响.此外,结合GAN使合成样本更接近真实样本,以解决SMOTE中新合成样本缺乏合理性的问题.最后,集成自编码器,通过降低数据集的维度来减少内存占用,并加速分类模型的训练.在CICIDS2017数据集上进行对比实验,结果表明本文提出的融合过-欠采样和GAN的网络入侵检测方法性能优于其他方法. 展开更多
关键词 网络入侵检测 生成对抗网络 SMOTE 自编码器
在线阅读 下载PDF
光谱数据增强方法及其应用进展
18
作者 唐磊 茅晔辉 +4 位作者 蔡婧 刘恒钦 闵红 安雅睿 刘曙 《分析测试学报》 北大核心 2025年第6期1227-1236,共10页
随着机器学习在光谱分析中的深入应用,模型训练面临数据样本稀缺、类别分布失衡等挑战,制约模型的泛化性能并引发过拟合风险。该文综述了2017年以来国内外公开文献,将光谱数据增强方法归纳为非深度学习数据增强方法和深度学习数据增强... 随着机器学习在光谱分析中的深入应用,模型训练面临数据样本稀缺、类别分布失衡等挑战,制约模型的泛化性能并引发过拟合风险。该文综述了2017年以来国内外公开文献,将光谱数据增强方法归纳为非深度学习数据增强方法和深度学习数据增强方法两大类,揭示了其从浅层数据扩充向深度生成建模的演进趋势。非深度学习的数据增强方法通过光谱变换和光谱合成来实现数据扩展,凭借其计算效率优势,在工业过程监控、中药材溯源及药物与食品质量检测等小样本场景中展现出良好的适用性。深度生成模型主要为生成对抗网络(GAN)及其衍生方法和改进型自编码器(AE)。GAN通过对抗博弈机制生成与原始数据具有结构相似性和分布一致性的增强样本,在医疗影像诊断、精准农业和材料分类等高精度建模场景广泛应用;改进型AE通过潜在空间表征学习捕获数据本质特征,其生成数据既保持原始分布特性又具备特征鲁棒性,在化学物质鉴定和土壤成分检测等高维数据处理任务中优势显著。该综述指出了现有数据增强方法的局限性,并对未来发展方向进行了探讨。 展开更多
关键词 数据增强 光谱分析 深度学习 生成对抗网络 变分自编码器
在线阅读 下载PDF
融合生成对抗图卷积网络的社会化推荐算法
19
作者 李梁 卫鼎峰 +1 位作者 李刚 赵清华 《计算机应用与软件》 北大核心 2025年第1期224-233,共10页
针对显性社交关系的嘈杂性问题以及大多数社会化推荐算法忽略好友之间动态变化的问题,提出一种融合生成对抗图卷积网络的社会化推荐算法(AGCN)。在评分信息和显性社交关系上构建用户的潜在好友关系;利用精简高效的图卷积神经网络学习信... 针对显性社交关系的嘈杂性问题以及大多数社会化推荐算法忽略好友之间动态变化的问题,提出一种融合生成对抗图卷积网络的社会化推荐算法(AGCN)。在评分信息和显性社交关系上构建用户的潜在好友关系;利用精简高效的图卷积神经网络学习信息的结构特征,以获取用户和产品的深层次特征;采用生成对抗网络动态地构建与用户具有相同喜好的可信好友,惩戒虚假好友,实现好友的动态变化。在Filmtrust与Ciao数据集上的结果表明,与BPR、SBPR、CUNE-BPR和LightGCN算法相比,无论是普通用户还是冷启动用户,该算法均实现了更好的推荐性能。 展开更多
关键词 显性社交关系 图卷积神经网络 生成对抗网络 自动编码器
在线阅读 下载PDF
基于半监督VAE和CGAN的运动想象脑电信号分类器
20
作者 袁凯烽 侯璐 黄永锋 《传感器与微系统》 北大核心 2025年第2期82-86,共5页
由于脑电(EEG)信号的特异性、隐私性,数据集相对匮乏,运动想象EEG(MI-EEG)信号分类是一项具有挑战性的任务。提出了一种基于半监督变分自编码器-条件生成对抗网络(SSVAE-CGAN)模型应用于MI-EEG信号的增强和分类。SSVAE-CGAN模型的SSVAE-... 由于脑电(EEG)信号的特异性、隐私性,数据集相对匮乏,运动想象EEG(MI-EEG)信号分类是一项具有挑战性的任务。提出了一种基于半监督变分自编码器-条件生成对抗网络(SSVAE-CGAN)模型应用于MI-EEG信号的增强和分类。SSVAE-CGAN模型的SSVAE-CGAN的编码器为EEGNet网络,获得MI-EEG信号的时域、频域和空间域的复合特征的潜在空间表示。不同于传统的无监督变分自编码器,在训练编码器时,SSVAE-CGAN使用MI-EEG信号的标签信息以监督的方式更好地构建潜在空间。然后,SSVAE-CGAN使用条件生成对抗网络接收带有标签信息的随机噪声进行生成器-判别器的对抗训练,并生成与潜在空间分布对齐的隐空间。在真实MI-EEG数据集进行了数据增强和分类实验,实验结果验证了本文模型的有效性。 展开更多
关键词 运动想象脑电 数据增强 分类 半监督变分自编码器 条件生成对抗网络
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部