期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Adsorption desulfurization and weak competitive behavior from 1-hexene over cesium-exchanged Y zeolites(CsY) 被引量:5
1
作者 Xiaojuan Liu Dezhi Yi +2 位作者 Yuanyuan Cui Li Shi Xuan Meng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期271-277,共7页
The systematic research about the adsorption desulfurization and competitive behavior from 1-hexene over cesium-exchanged Y zeolites has been investigated. The structural properties of the adsorbents were characterize... The systematic research about the adsorption desulfurization and competitive behavior from 1-hexene over cesium-exchanged Y zeolites has been investigated. The structural properties of the adsorbents were characterized by X-ray diffraction(XRD), N_2 sorption(BET) and thermal analysis(TGA). The effects of calcination temperature, calcination atmosphere, and adsorption temperature were studied by the dynamic and static tests. The competitive adsorption mechanisms between thiophene and 1-hexene were studied by in-situ Fourier transform infrared spectroscopy(in-situ FTIR) and temperature-programmed desorption(TPD). CsY adsorbents exhibited high selectivity for thiophene even when a large amount of olefins exist.In-situ FTIR spectra of thiophene and 1-hexene adsorption indicated that both thiophene and 1-hexene were mainly adsorbed on CsY via π-complexation. The higher desorption activated energy and higher adsorption heat of thiophene than 1-hexene obtained by thiophene-TPD and hexene-TPD has revealed that thiophene is adsorbed more strongly in CsY adsorbents than 1-hexene. 展开更多
关键词 1-hexeneCsY adsorption desulfurization Thiophene Mechanism
在线阅读 下载PDF
Reactive adsorption desulfurization coupling aromatization on Ni/ZnO-Zn_6Al_2O_9 prepared by Zn_xAl_y(OH)_2(CO_3)_z·x H_2O precursor for FCC gasoline 被引量:1
2
作者 Tinghai Wang Xueli Wang +6 位作者 Yuan Gao Yi Su Zhichao Miao Chenchen Wang Longgang Lu Lingjun Chou Xionghou Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第4期503-511,共9页
Aiming to improve the reactive adsorption desulfurization(RADS) performances of Ni/Zn O adsorbents,ZnxAly(OH)2(CO3)z·x H2 O precursor is synthesized by coprecipitation of Zn2+,AlO-2,and CO2-3; the Zn OZn6A... Aiming to improve the reactive adsorption desulfurization(RADS) performances of Ni/Zn O adsorbents,ZnxAly(OH)2(CO3)z·x H2 O precursor is synthesized by coprecipitation of Zn2+,AlO-2,and CO2-3; the Zn OZn6Al2O9 composite oxides are obtained by the calcination of ZnxAly(OH)2(CO3)z·x H2 O precursor,and the Ni/Zn O-Zn6Al2O9(6.0 wt% Ni O) adsorbents are prepared by wetness impregnation method. The phase,acid strength,acid type and quantity,morphology,and thermal properties were characterized by X-ray diffraction,temperature-programmed desorption of ammonia,pyridine-adsorbed infrared spectrum,high-resolution transmission electron microscopy,and Thermo Gravimetry-Derivative Thermo Gravimetry(TG-DTG),respectively. The breakthrough sulfur capacities of six adsorbents are between 34.2 and 47.9 mg/gcat. The kinetic studies indicated that the active energy of RADS(49.4 k J/mol) could reach nano-sized Zn O,the particle size of is about 12.0 nm. All the excellent RADS performances can be due to the high SBET. Also,there are some extents of aromatization reactions that occur,which can be contributed to the B?nsted acid rooted in Zn6Al2O9 composite oxide,and the octane number of products can be preserved well. 展开更多
关键词 Reactive adsorption desulfurization ZnxAly(OH)2(CO3)z·x H2O precursor Ni/Zn O-Zn6Al2O9 FCC gasoline AROMATIZATION
在线阅读 下载PDF
New insights into the mechanism of reactive adsorption desulfurization on Ni/ZnO catalysts:Theoretical evidence showing the existence of interfacial sulfur transfer pathway and the essential role of hydrogen
3
作者 Hou-Yu Zhu Nai-You Shi +8 位作者 Dong-Yuan Liu Rui Li Jing-Gang Yu Qi-Tang Ma Tu-Ya Li Hao Ren Yuan Pan Yun-Qi Liu Wen-Yue Guo 《Petroleum Science》 SCIE EI CSCD 2023年第5期3240-3250,共11页
As well known in the petroleum industry and academia,Ni/ZnO catalysts have excellent desulfurization performance.However,the sulfur transfer mechanism of reactive adsorption desulfurization(RADS)that occurs on Ni/ZnO ... As well known in the petroleum industry and academia,Ni/ZnO catalysts have excellent desulfurization performance.However,the sulfur transfer mechanism of reactive adsorption desulfurization(RADS)that occurs on Ni/ZnO catalysts remains controversial.Herein,a periodic Ni nanorod supported on ZnO slab was built to represent the Ni/ZnO system,and density functional theory calculations were performed to study the sulfur transfer process and the role of H_(2)within the process.The results elucidate that the direct solid-state diffusion of S from Ni to interfacial oxygen vacancies(Ov)is more favorable than the hydrogenation of S to SH/H_(2)S on Ni and the subsequent H_(2)S desorption,and accordingly,H_(2)O is produced on Ni rather than on ZnO.Ab initio thermodynamics analysis shows that the hydrogen atmosphere applied in preparing Ni/ZnO catalysts greatly promotes the O_(v)formation on ZnO surface,which accounts for the presence of interfacial O_(v)in freshly prepared catalysts.Under RADS condition,hydrogenation of interfacial O atoms to form O-H groups facilitates the reverse spillover of these lattice O atoms from ZnO to Ni,accompanied with the interfacial O_(v)generation.In contrast to the classic S transfer mechanism via H_(2)S,the present work clearly demonstrates that the interfacial S transfer is a feasible reaction pathway in the RADS mechanism.More importantly,the existence of interfacial O_(v)is an essential prerequisite for this interfacial S diffusion,and H_(2)plays a key role in facilitating the O_(v)formation. 展开更多
关键词 Reactive adsorption desulfurization Ni/ZnO Interface Sulfur transfer Density functional theory
在线阅读 下载PDF
Effect of Mixed Oxide Support for Ni/ZnO in Reactive Adsorption Desulfurization
4
作者 Chen Weicheng Yu Xiaoling +2 位作者 Huang Huan Shi Li Meng Xuan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2016年第4期11-18,共8页
The effect of mixed oxide support on the performance of Ni/ZnO in the reactive adsorption desulfurization(RADS) reaction was investigated in a fixed bed reactor by using thiophene as the sulfur-containing compound in ... The effect of mixed oxide support on the performance of Ni/ZnO in the reactive adsorption desulfurization(RADS) reaction was investigated in a fixed bed reactor by using thiophene as the sulfur-containing compound in the model gasoline. A series of oxide supports for Ni/ZnO were synthesized by the co-precipitation method and characterized by XRD, N_2-adsorption, TPR and NH_3-TPD techniques. It was found that the desulfurization capacity of Ni/ZnO was enhanced greatly when active components were supported on the proper mixed oxide. Ni/ZnO supported on oxides exhibited much higher desulfurization efficiency and sulfur adsorption capacity than the unsupported Ni/ZnO and the synthesized Ni/ZnO-SA adsorbent exhibited the highest efficiency for thiophene removal. The higher desulfurization activity and sulfur capacity of Ni/ZnO supported on SiO_2-Al_2O_3 with small particle size, high specific surface area and large pore volume could promote the high dispersion of active metal phase and the transfer of sulfur to ZnO with lower mass transfer resistance. γ-Al_2O_3 species could weaken the interaction of active phases and SiO_2 as well as could increase greatly the amount of weak acids. Therefore, these oxides could impose a great influence on the structure and chemical properties of the catalyst. 展开更多
关键词 reactive adsorption desulfurization Ni/ZnO support effect mixed oxide
在线阅读 下载PDF
Effects of toluene on thiophene adsorption over NaY and Ce(IV)Y zeolites 被引量:10
5
作者 Yanchun Shi Xiaojian Yang +2 位作者 Fuping Tian Cuiying Jia Yongying Chen 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第4期421-425,共5页
Zeolites NaY and Ce(IV)Y were employed as adsorbents to remove organic sulfur compounds from model gasoline (MG) solutions with and without toluene in static adsorption experiments at room temperature (RT) and a... Zeolites NaY and Ce(IV)Y were employed as adsorbents to remove organic sulfur compounds from model gasoline (MG) solutions with and without toluene in static adsorption experiments at room temperature (RT) and atmospheric pressure. The adsorbents were characterized by XRD, XRF and pyridine infrared spectrum (IR). The adsorption experiments show that the desulfurization performance of Ce(IV)Y is much better than that of NaY. The sulfur removal over both NaY and Ce(IV)Y decreases with the increase of toluene concentration in MG, however, the decline tendency on Ce(IV)Y is smooth, and it is steep on NaY. FT-IR spectra of thiophene adsorption indicate that thiophene molecules are mainly adsorbed on NaY via π electron interaction, but on Ce(IV)Y, in addition to the π electron interaction, both Ce^4+-S direct interaction and protonation of thiophene also play important roles. Toluene molecules are adsorbed on NaY also via π electron interaction. Although the amount of Bronsted acid sites is increased due to the introduction of Ce^4+ ions into NaY zeolite, it is not found to influence the adsorption mode of toluene over Ce(IV)Y. Compared with NaY zeolite, the improved desulfurization performance over Ce(IV)Y for removing organic sulfur compounds from MG solution, especially those containing large amount of aromatics, may be ascribed to the direct Ce(IV)-S interaction, which is much resistant to the influence resulted from toluene adsorption. 展开更多
关键词 TOLUENE Ce(IV)Y adsorption desulfurization THIOPHENE Ce^4+-S interaction
在线阅读 下载PDF
Efficient desulfurization of gasoline fuel using ionic liquid extraction as a complementary process to adsorptive desulfurization 被引量:9
6
作者 N.Farzin Nejad A.A.Miran Beigi 《Petroleum Science》 SCIE CAS CSCD 2015年第2期330-339,共10页
The extractive desulfurization of a model gaso- line containing several alkyl thiols and aromatic thiophenic compounds was investigated using two imidazolium-based ionic liquids (ILs), 1-butyl-3-methylimidazolium te... The extractive desulfurization of a model gaso- line containing several alkyl thiols and aromatic thiophenic compounds was investigated using two imidazolium-based ionic liquids (ILs), 1-butyl-3-methylimidazolium tetrachloroaluminate, and 1-octyl-3-methylimidazolium te- trafluoroborate, as extractants. A fractional factorial design of experiments was employed to evaluate the effects and possible interactions of several process variables. Analysis of variance tests indicated that the number of extraction steps and the IL/gasoline volume ratio were of statistically highly significant, but none of the interactions were significant. The results showed that the desulfurization efficiency of the model gasoline by the ILs could reach 95.2 % under the optimal conditions. The optimized conditions were applied to study the extraction of thiophenic compounds in model gasoline and several real gasoline samples; the following order was observed in their separation: benzothio- phenc 〉 thiophcne 〉 3-methylthiophene 〉 2-methylthiophene, with 96.1% removal efficiency for benzothiophene. The IL extraction was successfully applied as a complementary process to the adsorptive desulfurization with acti- vated Raney nickel and acetonitrile solvent. The results indicated that the adsorptive process combined with IL extraction could provide high efficiency and selectivity, which can be regarded as a promising energy efficient desulfurization strategy for production of low-sulfur gasoline. 展开更多
关键词 Liquid-liquid extraction EXPERIMENTALDESIGN Adsorptive desulfurization GASOLINE Thiopheniccompounds
在线阅读 下载PDF
Adsorptive desulfurization over hierarchical beta zeolite by alkaline treatment 被引量:11
7
作者 Fuping Tian Xiaojian Yang +2 位作者 Yanchun Shi Cuiying Jia Yongying Chen 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第6期647-652,共6页
Hierarchical beta zeolites with SiO2/Al2O3 molar ratios of 16 to 25 were obtained by alkaline treatment in NaOH solution. The effects of treatment temperature on crystallinity, textural properties and chemical composi... Hierarchical beta zeolites with SiO2/Al2O3 molar ratios of 16 to 25 were obtained by alkaline treatment in NaOH solution. The effects of treatment temperature on crystallinity, textural properties and chemical composites were studied by XRD, N2 sorption, FT-IR and XRF techniques. The desulfurization performance of parent and alkaline-treated beta zeolites was investigated by static absorption in four model fuels, containing four sulfur compounds of different molecular sizes like thiophene (TP), 3-methylthiophene (3-MT), benzothiophene (BT) and dibenzothiophene (DBT), respectively. The crystallinity was observed to be successfully maintained when the treatment temperature was below 50 ℃. Mesoporosity of beta zeolite was evidently developed with alkaline treatment. The formation of mesopore remarkably improved the desulfurization performance for TP, 3-MT, BT and DBT, especially for DBT with larger molecular diameter. Though the addition of toluene in the model fuels resulted in a significant drop of the desulfurization performance of mesoporous beta zeolite, the introduction of cerium ions to some extent mitigated the effect of toluene, which means that both the adsorbent’s porous structure and the adsorption mode are responsible for the desulfurization performance. The adsorbent of cerium ion-exchanged mesoporous beta showed about 80% recovery of desulfurization after the first regeneration. 展开更多
关键词 beta zeolite alkaline treatment pore size TOLUENE adsorptive desulfurization
在线阅读 下载PDF
Investigation on Modification of NaY Zeolite and Its Behaviors in Selective Adsorptive Desulfurization of FCC gasoline 被引量:1
8
作者 Zhu Heli Song Lijuan +3 位作者 Gao Xiang Wang Hongguo Zhang Xiaotong Sun Zhaolin (Liaoning Key Laboratory of Petrochemical Engineering, Liaoning University of Petroleum and Chemical Technology, Fushun 113001) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2009年第1期58-62,共5页
NaY zeolite was modified with oxalic acid, and Ce(IV)Y(1) zeolite was obtained via liquid phase ion exchange between the modified NaY zeolite and cerium nitrate. The Ce(IV)Y(2) zeolite was obtained via liquid phase io... NaY zeolite was modified with oxalic acid, and Ce(IV)Y(1) zeolite was obtained via liquid phase ion exchange between the modified NaY zeolite and cerium nitrate. The Ce(IV)Y(2) zeolite was obtained via liquid phase ion exchange between NaY zeolite and cerium nitrate. The performance of two Y zeolites [Ce(IV)Y(1) and Ce(IV)Y(2)] was compared through static selective adsorptive desulfurization of FCC gasoline at room temperature and normal pressure. The sulfur compounds and contents of the FCC gasoline were analyzed by microcoulometry and GC-SCD chromatogram. The results showed that the effect of adsorptive desulfurization of FCC gasoline achieved by Ce(IV)Y(1) zeolite was better than that of Ce(IV)Y(2) zeolite. The rate for adsorptive desulfurization of FCC gasoline by Ce(IV)Y(1) zeolite and Ce(IV)Y(2) zeolite was 85.0% and 62.4%, respectively. The Ce(IV)Y(1) zeolite could adsorb DMTs, which could not be adsorbed by Ce(IV)Y(2) zeolite. The rate of regeneration of extruded Ce(IV)Y(1)zeolite was 95.5%. 展开更多
关键词 ZEOLITE ion exchange FCC gasoline adsorptive desulfurization DMTs
在线阅读 下载PDF
Study on Modified Y Zeolites and Their Behaviors in Selective Adsorptive Desulfurization of FCC Gasoline (Ⅰ)
9
作者 Zhu Heli~(1,2) Liu Daosheng~2 +2 位作者 Song Lijuan~2 Sun Zhaolin~2 (1.PetroChina Jinxi Petrochemical Company,Huludao 125001 2.Liaoning Key Laboratory of Petrochemical Engineering,Liaoning University of Petroleum and Chemical Technology) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2009年第4期18-22,共5页
NaY zeolite was modified through dealumination with oxalic acid,and the HY zeolite was obtained by calcination of the modified NaY zeolite.The zeolite molding process was carried out at ambient temperature(25℃),and t... NaY zeolite was modified through dealumination with oxalic acid,and the HY zeolite was obtained by calcination of the modified NaY zeolite.The zeolite molding process was carried out at ambient temperature(25℃),and the influence of solid/fuel mass ratio and adsorptive desulfurization time on the HY zeolite were investigated through tests on static selective adsorptive desulfurization of FCC gasoline containing organic sulfur compounds(with a S content=135 ppm).The sulfur content and sulphide types in the FCC gasoline were analyzed by a GC 2010 sulfur analyzer and a GC-SCD chromatograph.The test results showed that the molded HY zeolite was better than the unmolded HY zeolite.At a static adsorptive desulfurization time on the molded HY zeolite equating to 6 hours,a solid/fuel mass ratio of 1:3,the sulfur content of FCC gasoline was decreased to 30 ppm,and the desulfurization rate was equal to 78%.When the breakthrough point of the molded HY was equal to 50 ppm,the molded HY zeolite was capable of adsorbing 4.86 mg of sulfur per gram of adsorbent.And the regeneration rate of molded HY zeolite was equal to 98%. 展开更多
关键词 DEALUMINATION ZEOLITE FCC gasoline adsorptive desulfurization
在线阅读 下载PDF
Ultra-deep adsorptive removal of thiophenic sulfur compounds from FCC gasoline over the specific active sites of CeHY zeolite 被引量:3
10
作者 Yun Zu Chang Zhang +5 位作者 Yucai Qin Xiaotong Zhang Li Zhang Honghai Liu Xionghou Gao Lijuan Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期256-267,共12页
Adsorption desulfurization performance of Na Y,HY and Ce HY zeolites is evaluated in a miniature fixedbed flow by model gasoline containing with thiophene,tetrahydrothiophene,2-methylthiophene,benzothiophene or mixed ... Adsorption desulfurization performance of Na Y,HY and Ce HY zeolites is evaluated in a miniature fixedbed flow by model gasoline containing with thiophene,tetrahydrothiophene,2-methylthiophene,benzothiophene or mixed sulfur compounds.The structural properties of adsorbents are characterized by XRD,N2-adsorption and XPS techniques.Adsorption desulfurization mechanisms of these sulfur compounds over the specific active sites of adsorbents as a major focus of this work,have been systematically investigated by using in situ FT-IR spectroscopy with single and double probing molecules.Desulfurization experimental results show that the Ce HY adsorbent exhibits superior adsorption sulfur capacity at breakthrough point of zero sulfur for ultra-deep removal of each thiophenic sulfur compound,especially in the capture of aromatic 2-methylthiophene(about ca.28.6 mgS/gadsorbent).The results of in situ FT-IR with single probing molecule demonstrate an important finding that high oligomerization ability of thiophene or 2-methylthiophene on the CeHY can promote the breakthrough adsorption sulfur capacity,mainly resulting from the synergy between Br?nsted acid sites and Ce(III)hydroxylated species active sites located in the supercages of Ce HY.Meanwhile,the result of in situ FT-IR with double probing molecules further reveals the essence of oligomerization reactions of thiophene and 2-methylthiophene molecules on those specific active sites.By contrast,the oligomerization reaction of benzothiophene molecules on the active sites of Ce HY cannot occur due to the restriction of cavity size of supercages,but they can be adsorbed on the Br?nsted acid sites via protonation,and on Ce(III)hydroxylated species and extra-framework aluminum hydroxyls species via direct"S-M"bonding interaction.As to the tetrahydrothiophene,adsorption mechanism is similar to that of benzothiophene,except in the absence of protonation.The paper can provide a new design idea of specific adsorption active sites in excellent desulfurization adsorbents for elevating higher quality of FCC gasoline in the future. 展开更多
关键词 CeHY zeolite Active sites Thiophenic sulfur compounds adsorption desulfurization Oligomerization ability In situ FT-IR spectroscopy
在线阅读 下载PDF
Removal of Heteroaromatic Sulfur Compounds by a Non-noble Metal Fe Single-atom Adsorbent
11
作者 LüYanjun Wen Jie +4 位作者 Gong Qinmei Zhang Lianhong Li Airong Arshid Mahmood Ali Zhang Hui 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2022年第2期46-57,共12页
Sulfur-containing compounds(SCCs)must be removed from fuels before use.In this study,a novel non-noble metal Fe single-atom adsorbent(SA-Fe/CN)was synthesized using a core-shell strategy and applied for the adsorptive... Sulfur-containing compounds(SCCs)must be removed from fuels before use.In this study,a novel non-noble metal Fe single-atom adsorbent(SA-Fe/CN)was synthesized using a core-shell strategy and applied for the adsorptive removal of benzothiophene(BT)and dibenzothiophene(DBT).The adsorption isotherms,thermodynamics,kinetics,and adsorption-regeneration cycles of DBT and BT on SA-Fe/CN were studied.SA-Fe/CN exhibited a significant capacity to adsorb DBT,and the isothermal equilibrium was well described by the Langmuir isotherm.The Gibbs free energy values were negative(ΔG^(0)<0),indicating that the adsorption of DBT and BT was favored and spontaneous.The adsorption process conformed to the pseudo-second-order kinetic model with high R^(2) values(0.9994,0.9987).The adsorption capacity of SA-Fe/CN for DBT and BT reached 163.21 mg/g and 90.35 mg/g,respectively,due to the highly active sites of the single atom and electrostatic interaction with the sulfide.Therefore,SA-Fe/CN may be a promising adsorbent for SCC removal. 展开更多
关键词 single-atom adsorbent adsorptive desulfurization thermodynamics and kinetics heteroaromatic sulfur compounds
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部