Continuous basalt fiber(CBF)is an outstanding inorganic fiber produced from nature,which has a wide range of applications in the field of armor protection of national defense military.However,the mechanical response a...Continuous basalt fiber(CBF)is an outstanding inorganic fiber produced from nature,which has a wide range of applications in the field of armor protection of national defense military.However,the mechanical response and failure mechanism of 3D printed CBF reinforced components are still not well understood.Here,the 3D printing thermoplastic composites with high volume fraction CBF have been successfully prepared by fused deposition modelling(FDM)method.The effects of fiber printing direction and polymer matrix type on the tensile and flexural properties of the 3D printed composites have been explored,and the detailed failure morphology has been characterized using scanning electron microscopy and optical microscopy.It was found that under high fiber volume fraction,3D printed CBF reinforced polyamides(PA)composites have the best ability to maintain material integrity of the composites,followed by acrylonitrile butadiene styrene(ABS)and high impact polystyrene(HIPS).Besides,the results from rule of mixtures can accurately predict the longitudinal Young’s modulus of the 3D printed specimens,but there exists a large discrepancy for the prediction of the tensile strength.The microstructure analysis shows that the failure modes of 3D printed composites mainly include fiber debonding,fiber pull-out,stress whitening and matrix cracking.展开更多
Military missions in hostile environments are often costly and unpredictable,with squadrons sometimes facing isolation and resource scarcity.In such scenarios,critical components in vehicles,drones,and energy generato...Military missions in hostile environments are often costly and unpredictable,with squadrons sometimes facing isolation and resource scarcity.In such scenarios,critical components in vehicles,drones,and energy generators may require structural reinforcement or repair due to damage.This paper proposes a portable,on-site production method for molds under challenging conditions,where material supply is limited.The method utilizes large format additive manufacturing(LFAM)with recycled composite materials,sourced from end-of-life components and waste,as feedstock.The study investigates the microstructural effects of recycling through shredding techniques,using microscopic imaging.Three potential defense-sector applications are explored,specifically in the aerospace,automotive,and energy industries.Additionally,the influence of key printing parameters,particularly nonparallel plane deposition at a 45-degree angle,on the mechanical behavior of ABS reinforced with 20%glass fiber(GF)is examined.The results demonstrate the feasibility of this manufacturing approach,highlighting reductions in waste material and production times compared to traditional methods.Shorter layer times were found to reduce thermal gradients between layers,thereby improving layer adhesion.While 45-degree deposition enhanced Young's modulus,it slightly reduced interlayer adhesion quality.Furthermore,recycling-induced fiber length reduction led to material degradation,aligning with findings from previous studies.Challenges encountered during implementation included weak part adherence to the print bed and local excess material deposition.Overall,the proposed methodology offers a cost-effective alternative to traditional CNC machining for mold production,demonstrating its potential for on-demand manufacturing in resource-constrained environments.展开更多
基金the financial support from the National Key Research and Development Program of China(grant no.2020YFA0711800)National Natural Science Foundation of China(grant no.11802027)+2 种基金State Key Laboratory of Explosion Science and Technology(grant no.YPJH20-6,QNKT20-01,JCRC18-01)BITBRFFR Joint Research Program(BITBLR2020018)Beijing Institute of Technology Research Fund。
文摘Continuous basalt fiber(CBF)is an outstanding inorganic fiber produced from nature,which has a wide range of applications in the field of armor protection of national defense military.However,the mechanical response and failure mechanism of 3D printed CBF reinforced components are still not well understood.Here,the 3D printing thermoplastic composites with high volume fraction CBF have been successfully prepared by fused deposition modelling(FDM)method.The effects of fiber printing direction and polymer matrix type on the tensile and flexural properties of the 3D printed composites have been explored,and the detailed failure morphology has been characterized using scanning electron microscopy and optical microscopy.It was found that under high fiber volume fraction,3D printed CBF reinforced polyamides(PA)composites have the best ability to maintain material integrity of the composites,followed by acrylonitrile butadiene styrene(ABS)and high impact polystyrene(HIPS).Besides,the results from rule of mixtures can accurately predict the longitudinal Young’s modulus of the 3D printed specimens,but there exists a large discrepancy for the prediction of the tensile strength.The microstructure analysis shows that the failure modes of 3D printed composites mainly include fiber debonding,fiber pull-out,stress whitening and matrix cracking.
基金Generalitat Valenciana(GVA)and Spanish Ministry of Science and Innovation(Grant Nos.TED2021-130879 B-C21,CIACIF/2021/286,PID2023-151110OB-I00,and CIPROM/2022/3)to provide funds for conducting experiments and software licensessupported by the National Research Foundation,Prime Minister's Office,Singapore under its Campus for Research Excellence and Technological Enterprise(CREATE)programme。
文摘Military missions in hostile environments are often costly and unpredictable,with squadrons sometimes facing isolation and resource scarcity.In such scenarios,critical components in vehicles,drones,and energy generators may require structural reinforcement or repair due to damage.This paper proposes a portable,on-site production method for molds under challenging conditions,where material supply is limited.The method utilizes large format additive manufacturing(LFAM)with recycled composite materials,sourced from end-of-life components and waste,as feedstock.The study investigates the microstructural effects of recycling through shredding techniques,using microscopic imaging.Three potential defense-sector applications are explored,specifically in the aerospace,automotive,and energy industries.Additionally,the influence of key printing parameters,particularly nonparallel plane deposition at a 45-degree angle,on the mechanical behavior of ABS reinforced with 20%glass fiber(GF)is examined.The results demonstrate the feasibility of this manufacturing approach,highlighting reductions in waste material and production times compared to traditional methods.Shorter layer times were found to reduce thermal gradients between layers,thereby improving layer adhesion.While 45-degree deposition enhanced Young's modulus,it slightly reduced interlayer adhesion quality.Furthermore,recycling-induced fiber length reduction led to material degradation,aligning with findings from previous studies.Challenges encountered during implementation included weak part adherence to the print bed and local excess material deposition.Overall,the proposed methodology offers a cost-effective alternative to traditional CNC machining for mold production,demonstrating its potential for on-demand manufacturing in resource-constrained environments.