Objective To evaluate left univentricular (LUV) pacing for cardiac resynchronization therapy (CRT) using a rate-adaptive atrioven- tricular delay (RAAVD) algorithm to track physiological atrioventricular delay ...Objective To evaluate left univentricular (LUV) pacing for cardiac resynchronization therapy (CRT) using a rate-adaptive atrioven- tricular delay (RAAVD) algorithm to track physiological atrioventricular delay (AVD). Methods A total of 72 patients with congestive heart failure (CHF) were randomized to RAAVD LUV pacing versus standard biventricular (BiV) pacing in a 1 : 1 ratio. Echocardiography was used to optimize AVD for both groups. The effects of sequential BiV pacing and LUV pacing with optimized A-V (right atrio-LV) delay using an RAAVD algorithm were compared. The standard deviation (SD) of the S/R ratio in lead VI at five heart rate (HR) segments (Rs/R-SD5), defined as the "tracking index," was used to evaluate the accuracy of the RAAVD algorithm for tracking physiological AVD. Results TheQRS complex duration (132 ± 9.8 vs. 138± 10ms, P 〈 0.05), the time required for optimization (21 ±5 vs. 50±8min, P〈 0.001), the mitral regurgitant area (1.9 ± 1.1 vs. 2.5 ± 1.3 em2, P 〈 0.05), the interventricular mechanical delay time (60.7 ± 13.3 ms vs. 68.3 ± 14.2 ms, P 〈 0.05), and the average annual cost (13,200 ± 1000 vs. 21,600 ± 2000 RMB, P 〈 0.001) in the RAAVD LUV pacing group were significantly less than those in the standard BiV pacing group. The aortic valve velocity-time integral in the RAAVD LUV pacing group was greater than that in the standard BiV pacing group (22.7 ± 2.2 vs. 21.4 ± 2.1 cm, P 〈 0.05). The Rs/R-SD5 was 4.08 ± 1.91 in the RAAVD LUV pacing group, and was significantly negatively correlated with improved left ventricular ejection fraction (LVEF) (ALVEF, Pearson's r = -0.427, P = 0.009), and positively correlated with New York Heart Association class (Spearman's r - 0.348, P 0.037). Conclusions RAAVD LUV pacing is as effective as standard BiV pacing, can be more physiological than standard BiV pacing, and can de- crease the average annual cost of CRT.展开更多
With its rapid development in the wireless markets, IEEE 802.11 WLAN is experiencing a huge popularity. However, due to the limitation of frequency bandwidth of WLANs, it is essential that the available radio resource...With its rapid development in the wireless markets, IEEE 802.11 WLAN is experiencing a huge popularity. However, due to the limitation of frequency bandwidth of WLANs, it is essential that the available radio resource should be fully utilized to offer different services to multiple users. In order to maximize system throughput while still guaranteeing the fairness among users, a proportional fairness based algorithm is proposed in this work. Since most of the previous resource allocation algorithms were simply based on the channel conditions without taking into account user's demand, in this paper, we introduce the theory of fuzzy synthetic evaluation(FSE) which also allows us to consider user's demand as an important factor. As such, the fairness among users can be improved based on different users' requirements for services. In addition, a channel state information based rate adaptation scheme is also proposed. Through simulation studies, the results clearly validate that our proposed scheme shows advantages on providing user fairness while still improving the system throughput.展开更多
Emerging wireless community cloud enables usergenerated video content to be shared and consumed in a social context. However, the nature of shared wireless medium and timevarying channels seriously limits the quality ...Emerging wireless community cloud enables usergenerated video content to be shared and consumed in a social context. However, the nature of shared wireless medium and timevarying channels seriously limits the quality of service(QoS), partially owing to the lack of mechanisms for effectively utilizing multi-rate channel resources. In this paper, the joint optimization of admission control and rate adaptation is proposed, resulting in a bandwidth-aware rate-adaptive admission control(BRAC) scheme to provide bandwidth guarantee for sharing social multimedia contents. The analytical approach leads to the following major contributions:(1) a bandwidth-aware rate selection(BRS) algorithm to optimally meet the bandwidth requirement of the data session and channel conditions at the physical layer;(2) a routing-coupled rate adaption and admission control algorithm to admit data sessions with bandwidth guarantee. Moreover, extensive numerical simulations suggest that BRAC is efficient and effective in meeting the bandwidth requirements for sharing social multimedia contents. These insights will shed light on communication system implementation for multimedia content sharing over multirate wireless community cloud.展开更多
Dynamic adaptive streaming over HTTP (DASH) has been widely deployed. However, large latency in HTTP/1.1 cannot meet the requirements of live streaming. Data- pushing in HTFP/2 is emerging as a promising technology....Dynamic adaptive streaming over HTTP (DASH) has been widely deployed. However, large latency in HTTP/1.1 cannot meet the requirements of live streaming. Data- pushing in HTFP/2 is emerging as a promising technology. For video live over HTTP/2, new challenges arise due to both low-delay and small buffer constraints. In this paper, we study the rate adaption problem over HTFP/2 with the aim to improve the quality of experience (QoE) of live streaming. To track the dynamic characteristics of the streaming system, a Markov-theoretical approach is employed. System variables are taken into account to describe the system state, by which the system transi- tion probability is derived. Moreover, we design a dynamic reward function considering both the quality of user experience and dynamic system variables. Therefore, the rate adaption problem is formulated into a Markov decision based optimization problem and the best streaming policy is obtained. At last, the effectiveness of our proposed rate adaption scheme is demonstrated by numerous experiment results.展开更多
At present, the major drawback for mobile phones is the issue of power consumption. As one of the alternatives to decrease the power consumption of standard, power-hungry location-based services usually require the kn...At present, the major drawback for mobile phones is the issue of power consumption. As one of the alternatives to decrease the power consumption of standard, power-hungry location-based services usually require the knowledge of how individual phone features consume power. A typical phone feature is that the applications related to multimedia streaming utilize more power while receiving, processing, and displaying the multimedia contents, thus contributing to the increased power consumption. There is a growing concern that current battery modules have limited capability in fulfilling the long-term energy need for the progress on the mobile phone because of increasing power consumption during multimedia streaming processes. Considering this, in this paper, we provide an offline meaning sleep-mode method to compute the minimum power consumption comparing with the power-on solution to save power by implementing energy rate adaptation(RA) mechanism based on mobile excess energy level purpose to save battery power use. Our simulation results show that our RA method preserves efficient power while achieving better throughput compared with the mechanism without rate adaptation(WRA).展开更多
A multilayer perceptron neural network system is established to support the diagnosis for five most common heart diseases (coronary heart disease, rheumatic valvular heart disease, hypertension, chronic cor pulmonale ...A multilayer perceptron neural network system is established to support the diagnosis for five most common heart diseases (coronary heart disease, rheumatic valvular heart disease, hypertension, chronic cor pulmonale and congenital heart disease). Momentum term, adaptive learning rate, the forgetting mechanics, and conjugate gradients method are introduced to improve the basic BP algorithm aiming to speed up the convergence of the BP algorithm and enhance the accuracy for diagnosis. A heart disease database consisting of 352 samples is applied to the training and testing courses of the system. The performance of the system is assessed by cross-validation method. It is found that as the basic BP algorithm is improved step by step, the convergence speed and the classification accuracy of the network are enhanced, and the system has great application prospect in supporting heart diseases diagnosis.展开更多
文摘Objective To evaluate left univentricular (LUV) pacing for cardiac resynchronization therapy (CRT) using a rate-adaptive atrioven- tricular delay (RAAVD) algorithm to track physiological atrioventricular delay (AVD). Methods A total of 72 patients with congestive heart failure (CHF) were randomized to RAAVD LUV pacing versus standard biventricular (BiV) pacing in a 1 : 1 ratio. Echocardiography was used to optimize AVD for both groups. The effects of sequential BiV pacing and LUV pacing with optimized A-V (right atrio-LV) delay using an RAAVD algorithm were compared. The standard deviation (SD) of the S/R ratio in lead VI at five heart rate (HR) segments (Rs/R-SD5), defined as the "tracking index," was used to evaluate the accuracy of the RAAVD algorithm for tracking physiological AVD. Results TheQRS complex duration (132 ± 9.8 vs. 138± 10ms, P 〈 0.05), the time required for optimization (21 ±5 vs. 50±8min, P〈 0.001), the mitral regurgitant area (1.9 ± 1.1 vs. 2.5 ± 1.3 em2, P 〈 0.05), the interventricular mechanical delay time (60.7 ± 13.3 ms vs. 68.3 ± 14.2 ms, P 〈 0.05), and the average annual cost (13,200 ± 1000 vs. 21,600 ± 2000 RMB, P 〈 0.001) in the RAAVD LUV pacing group were significantly less than those in the standard BiV pacing group. The aortic valve velocity-time integral in the RAAVD LUV pacing group was greater than that in the standard BiV pacing group (22.7 ± 2.2 vs. 21.4 ± 2.1 cm, P 〈 0.05). The Rs/R-SD5 was 4.08 ± 1.91 in the RAAVD LUV pacing group, and was significantly negatively correlated with improved left ventricular ejection fraction (LVEF) (ALVEF, Pearson's r = -0.427, P = 0.009), and positively correlated with New York Heart Association class (Spearman's r - 0.348, P 0.037). Conclusions RAAVD LUV pacing is as effective as standard BiV pacing, can be more physiological than standard BiV pacing, and can de- crease the average annual cost of CRT.
基金partially supported by the Academy of Finland (Decision No. 284748, 288473)
文摘With its rapid development in the wireless markets, IEEE 802.11 WLAN is experiencing a huge popularity. However, due to the limitation of frequency bandwidth of WLANs, it is essential that the available radio resource should be fully utilized to offer different services to multiple users. In order to maximize system throughput while still guaranteeing the fairness among users, a proportional fairness based algorithm is proposed in this work. Since most of the previous resource allocation algorithms were simply based on the channel conditions without taking into account user's demand, in this paper, we introduce the theory of fuzzy synthetic evaluation(FSE) which also allows us to consider user's demand as an important factor. As such, the fairness among users can be improved based on different users' requirements for services. In addition, a channel state information based rate adaptation scheme is also proposed. Through simulation studies, the results clearly validate that our proposed scheme shows advantages on providing user fairness while still improving the system throughput.
基金sponsored by the following funds:the National Natural Science Foundation of China(No.61502381)the Fundamental Research Funds for the Central Universities(No.xjj2015065)the China Post Doctoral Science Foundation(No.2015M570836)
文摘Emerging wireless community cloud enables usergenerated video content to be shared and consumed in a social context. However, the nature of shared wireless medium and timevarying channels seriously limits the quality of service(QoS), partially owing to the lack of mechanisms for effectively utilizing multi-rate channel resources. In this paper, the joint optimization of admission control and rate adaptation is proposed, resulting in a bandwidth-aware rate-adaptive admission control(BRAC) scheme to provide bandwidth guarantee for sharing social multimedia contents. The analytical approach leads to the following major contributions:(1) a bandwidth-aware rate selection(BRS) algorithm to optimally meet the bandwidth requirement of the data session and channel conditions at the physical layer;(2) a routing-coupled rate adaption and admission control algorithm to admit data sessions with bandwidth guarantee. Moreover, extensive numerical simulations suggest that BRAC is efficient and effective in meeting the bandwidth requirements for sharing social multimedia contents. These insights will shed light on communication system implementation for multimedia content sharing over multirate wireless community cloud.
基金supported in part by China“973”Program under Grant No.2014CB340303”ZTE Industry-Academia-Research Cooperation Funds
文摘Dynamic adaptive streaming over HTTP (DASH) has been widely deployed. However, large latency in HTTP/1.1 cannot meet the requirements of live streaming. Data- pushing in HTFP/2 is emerging as a promising technology. For video live over HTTP/2, new challenges arise due to both low-delay and small buffer constraints. In this paper, we study the rate adaption problem over HTFP/2 with the aim to improve the quality of experience (QoE) of live streaming. To track the dynamic characteristics of the streaming system, a Markov-theoretical approach is employed. System variables are taken into account to describe the system state, by which the system transi- tion probability is derived. Moreover, we design a dynamic reward function considering both the quality of user experience and dynamic system variables. Therefore, the rate adaption problem is formulated into a Markov decision based optimization problem and the best streaming policy is obtained. At last, the effectiveness of our proposed rate adaption scheme is demonstrated by numerous experiment results.
基金supported by X-Project funded by the Ministry of Science,ICT&Future Planning under Grant No.NRF-2015R1A2A1A16074929
文摘At present, the major drawback for mobile phones is the issue of power consumption. As one of the alternatives to decrease the power consumption of standard, power-hungry location-based services usually require the knowledge of how individual phone features consume power. A typical phone feature is that the applications related to multimedia streaming utilize more power while receiving, processing, and displaying the multimedia contents, thus contributing to the increased power consumption. There is a growing concern that current battery modules have limited capability in fulfilling the long-term energy need for the progress on the mobile phone because of increasing power consumption during multimedia streaming processes. Considering this, in this paper, we provide an offline meaning sleep-mode method to compute the minimum power consumption comparing with the power-on solution to save power by implementing energy rate adaptation(RA) mechanism based on mobile excess energy level purpose to save battery power use. Our simulation results show that our RA method preserves efficient power while achieving better throughput compared with the mechanism without rate adaptation(WRA).
基金the Natural Science Foundation of China (No. 30070211).
文摘A multilayer perceptron neural network system is established to support the diagnosis for five most common heart diseases (coronary heart disease, rheumatic valvular heart disease, hypertension, chronic cor pulmonale and congenital heart disease). Momentum term, adaptive learning rate, the forgetting mechanics, and conjugate gradients method are introduced to improve the basic BP algorithm aiming to speed up the convergence of the BP algorithm and enhance the accuracy for diagnosis. A heart disease database consisting of 352 samples is applied to the training and testing courses of the system. The performance of the system is assessed by cross-validation method. It is found that as the basic BP algorithm is improved step by step, the convergence speed and the classification accuracy of the network are enhanced, and the system has great application prospect in supporting heart diseases diagnosis.