The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific re...The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields.展开更多
Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in Ind...Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in India. Limited priority is observed at a few intersections, where priorities are perceived by drivers based on geom etry, traffic volume, and speed on the approaches of intersection. Analyzing such intersections is complex because the overall traffic behavior is the result of drivers, vehicles, and traffic flow characteristics. Fuzzy theory has been widely used to analyze similar situations. This paper describes the application of adaptive neurofuzzy interface system (ANFIS) to the modeling of gap acceptance behavior of rightturning vehicles at limited priority Tintersections (in India, vehicles are driven on the left side of a road). Field data are collected using video cameras at four Tintersections having limited priority. The data extracted include gap/lag, subject vehicle type, conflicting vehicle type, and driver's decision (accepted/rejected). ANFIS models are developed by using 80 % of the extracted data (total data observations for major road right turning vehicles are 722 and 1,066 for minor road right turning vehicles) and remaining are used for model vali dation. Four different combinations of input variables are considered for major and minor road right turnings sepa rately. Correct prediction by ANFIS models ranges from 75.17 % to 82.16 % for major road right turning and 87.20 % to 88.62 % for minor road right turning. Themodels developed in this paper can be used in the dynamic estimation of gap acceptance in traffic simulation models.展开更多
There are two distinct types of domains,design-and cross-classes domains,with the former extensively studied under the topic of small-area estimation.In natural resource inventory,however,most classes listed in the co...There are two distinct types of domains,design-and cross-classes domains,with the former extensively studied under the topic of small-area estimation.In natural resource inventory,however,most classes listed in the condition tables of national inventory programs are characterized as cross-classes domains,such as vegetation type,productivity class,and age class.To date,challenges remain active for inventorying cross-classes domains because these domains are usually of unknown sampling frame and spatial distribution with the result that inference relies on population-level as opposed to domain-level sampling.Multiple challenges are noteworthy:(1)efficient sampling strategies are difficult to develop because of little priori information about the target domain;(2)domain inference relies on a sample designed for the population,so within-domain sample sizes could be too small to support a precise estimation;and(3)increasing sample size for the population does not ensure an increase to the domain,so actual sample size for a target domain remains highly uncertain,particularly for small domains.In this paper,we introduce a design-based generalized systematic adaptive cluster sampling(GSACS)for inventorying cross-classes domains.Design-unbiased Hansen-Hurwitz and Horvitz-Thompson estimators are derived for domain totals and compared within GSACS and with systematic sampling(SYS).Comprehensive Monte Carlo simulations show that(1)GSACS Hansen-Hurwitz and Horvitz-Thompson estimators are unbiased and equally efficient,whereas thelatter outperforms the former for supporting a sample of size one;(2)SYS is a special case of GSACS while the latter outperforms the former in terms of increased efficiency and reduced intensity;(3)GSACS Horvitz-Thompson variance estimator is design-unbiased for a single SYS sample;and(4)rules-ofthumb summarized with respect to sampling design and spatial effect improve precision.Because inventorying a mini domain is analogous to inventorying a rare variable,alternative network sampling procedures are also readily available for inventorying cross-classes domains.展开更多
In this study,uniaxial compressive strength(UCS),unit weight(UW),Brazilian tensile strength(BTS),Schmidt hardness(SHH),Shore hardness(SSH),point load index(Is50)and P-wave velocity(Vp)properties were determined.To pre...In this study,uniaxial compressive strength(UCS),unit weight(UW),Brazilian tensile strength(BTS),Schmidt hardness(SHH),Shore hardness(SSH),point load index(Is50)and P-wave velocity(Vp)properties were determined.To predict the UCS,simple regression(SRA),multiple regression(MRA),artificial neural network(ANN),adaptive neuro-fuzzy inference system(ANFIS)and genetic expression programming(GEP)have been utilized.The obtained UCS values were compared with the actual UCS values with the help of various graphs.Datasets were modeled using different methods and compared with each other.In the study where the performance indice PIat was used to determine the best performing method,MRA method is the most successful method with a small difference.It is concluded that the mean PIat equal to 2.46 for testing dataset suggests the superiority of the MRA,while these values are 2.44,2.33,and 2.22 for GEP,ANFIS,and ANN techniques,respectively.The results pointed out that the MRA can be used for predicting UCS of rocks with higher capacity in comparison with others.According to the performance index assessment,the weakest model among the nine model is P7,while the most successful models are P2,P9,and P8,respectively.展开更多
基金Supported by the Soft Science Program of Jiangsu Province(BR2010079)~~
文摘The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields.
基金partially funded by Department of Science and Technology (DST), Govt. of Indiaproject SR/ FTP/ETA-61/2010
文摘Gap acceptance theory is broadly used for evaluating unsignalized intersections in developed coun tries. Intersections with no specific priority to any move ment, known as uncontrolled intersections, are common in India. Limited priority is observed at a few intersections, where priorities are perceived by drivers based on geom etry, traffic volume, and speed on the approaches of intersection. Analyzing such intersections is complex because the overall traffic behavior is the result of drivers, vehicles, and traffic flow characteristics. Fuzzy theory has been widely used to analyze similar situations. This paper describes the application of adaptive neurofuzzy interface system (ANFIS) to the modeling of gap acceptance behavior of rightturning vehicles at limited priority Tintersections (in India, vehicles are driven on the left side of a road). Field data are collected using video cameras at four Tintersections having limited priority. The data extracted include gap/lag, subject vehicle type, conflicting vehicle type, and driver's decision (accepted/rejected). ANFIS models are developed by using 80 % of the extracted data (total data observations for major road right turning vehicles are 722 and 1,066 for minor road right turning vehicles) and remaining are used for model vali dation. Four different combinations of input variables are considered for major and minor road right turnings sepa rately. Correct prediction by ANFIS models ranges from 75.17 % to 82.16 % for major road right turning and 87.20 % to 88.62 % for minor road right turning. Themodels developed in this paper can be used in the dynamic estimation of gap acceptance in traffic simulation models.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. 2021ZY04)the National Natural Science Foundation of China (Grant No. 32001252)the International Center for Bamboo and Rattan (Grant No. 1632020029)
文摘There are two distinct types of domains,design-and cross-classes domains,with the former extensively studied under the topic of small-area estimation.In natural resource inventory,however,most classes listed in the condition tables of national inventory programs are characterized as cross-classes domains,such as vegetation type,productivity class,and age class.To date,challenges remain active for inventorying cross-classes domains because these domains are usually of unknown sampling frame and spatial distribution with the result that inference relies on population-level as opposed to domain-level sampling.Multiple challenges are noteworthy:(1)efficient sampling strategies are difficult to develop because of little priori information about the target domain;(2)domain inference relies on a sample designed for the population,so within-domain sample sizes could be too small to support a precise estimation;and(3)increasing sample size for the population does not ensure an increase to the domain,so actual sample size for a target domain remains highly uncertain,particularly for small domains.In this paper,we introduce a design-based generalized systematic adaptive cluster sampling(GSACS)for inventorying cross-classes domains.Design-unbiased Hansen-Hurwitz and Horvitz-Thompson estimators are derived for domain totals and compared within GSACS and with systematic sampling(SYS).Comprehensive Monte Carlo simulations show that(1)GSACS Hansen-Hurwitz and Horvitz-Thompson estimators are unbiased and equally efficient,whereas thelatter outperforms the former for supporting a sample of size one;(2)SYS is a special case of GSACS while the latter outperforms the former in terms of increased efficiency and reduced intensity;(3)GSACS Horvitz-Thompson variance estimator is design-unbiased for a single SYS sample;and(4)rules-ofthumb summarized with respect to sampling design and spatial effect improve precision.Because inventorying a mini domain is analogous to inventorying a rare variable,alternative network sampling procedures are also readily available for inventorying cross-classes domains.
文摘In this study,uniaxial compressive strength(UCS),unit weight(UW),Brazilian tensile strength(BTS),Schmidt hardness(SHH),Shore hardness(SSH),point load index(Is50)and P-wave velocity(Vp)properties were determined.To predict the UCS,simple regression(SRA),multiple regression(MRA),artificial neural network(ANN),adaptive neuro-fuzzy inference system(ANFIS)and genetic expression programming(GEP)have been utilized.The obtained UCS values were compared with the actual UCS values with the help of various graphs.Datasets were modeled using different methods and compared with each other.In the study where the performance indice PIat was used to determine the best performing method,MRA method is the most successful method with a small difference.It is concluded that the mean PIat equal to 2.46 for testing dataset suggests the superiority of the MRA,while these values are 2.44,2.33,and 2.22 for GEP,ANFIS,and ANN techniques,respectively.The results pointed out that the MRA can be used for predicting UCS of rocks with higher capacity in comparison with others.According to the performance index assessment,the weakest model among the nine model is P7,while the most successful models are P2,P9,and P8,respectively.