The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimiz...The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP.展开更多
An improved adaptive genetic algorithm is presented in this paper. It primarily includes two modified methods: one is novel adaptive probabilities of crossover and mutation, the other is truncated selection approach....An improved adaptive genetic algorithm is presented in this paper. It primarily includes two modified methods: one is novel adaptive probabilities of crossover and mutation, the other is truncated selection approach. This algorithm has been validated to be superior to the simple genetic algorithm (SGA) by a complicated binary testing function. Then the proposed algorithm is applied to optimizing the planar retrodirective array to reduce the cost of the hardware. The fitness function is discussed in the optimization example. After optimization, the sparse planar retrodirective antenna array keeps excellent retrodirectivity, while the array architecture has been simplified by 34%. The optimized antenna array can replace uniform full array effectively. Results show that this work will gain more engineering benefits in practice.展开更多
Multiple genetic algorithms (GAs) need a large population size, which will take a long time for evolution. A new fuzzy adaptive GA is proposed in this paper. This algorithm is more effective in global search while kee...Multiple genetic algorithms (GAs) need a large population size, which will take a long time for evolution. A new fuzzy adaptive GA is proposed in this paper. This algorithm is more effective in global search while keeping the overall population size constant. The simulation results of function optimization show that with the proposed algorithm, the phenomenon of premature convergence can be overcome effectively, and a satisfying optimization result is obtained.展开更多
Adaptive signal decomposition is an important signal processing method.The chirp-based signal representation,for example,the Gaussian chirplet decomposition,has been an active research topic in the field of signal pro...Adaptive signal decomposition is an important signal processing method.The chirp-based signal representation,for example,the Gaussian chirplet decomposition,has been an active research topic in the field of signal processing.A main challenge of the Gaussian chirplet decomposition is the numerical implementation of the matching pursuit,which is an adaptive signal decomposition scheme,and the challenge remains an open research topic.In this paper,a new optimal time-frequency atom search method based on the adaptive genetic algorithm is proposed,aiming to the low precision problem of the traditional methods.Firstly,a discrete formula of finite length time-frequency atom sequence is derived.Secondly,an algorithm based on the adaptive genetic algorithm is described in detail.Finally,a simulation is carried out,and the result displays its validity and stability.展开更多
The gamma-graphyne nanoribbons(γ-GYNRs) incorporating diamond-shaped segment(DSSs) with excellent thermoelectric properties are systematically investigated by combining nonequilibrium Green’s functions with adaptive...The gamma-graphyne nanoribbons(γ-GYNRs) incorporating diamond-shaped segment(DSSs) with excellent thermoelectric properties are systematically investigated by combining nonequilibrium Green’s functions with adaptive genetic algorithm. Our calculations show that the adaptive genetic algorithm is efficient and accurate in the process of identifying structures with excellent thermoelectric performance. In multiple rounds, an average of 476 candidates(only 2.88% of all16512 candidate structures) are calculated to obtain the structures with extremely high thermoelectric conversion efficiency.The room temperature thermoelectric figure of merit(ZT) of the optimal γ-GYNR incorporating DSSs is 1.622, which is about 5.4 times higher than that of pristine γ-GYNR(length 23.693 nm and width 2.660 nm). The significant improvement of thermoelectric performance of the optimal γ-GYNR is mainly attributed to the maximum balance of inhibition of thermal conductance(proactive effect) and reduction of thermal power factor(side effect). Moreover, through exploration of the main variables affecting the genetic algorithm, it is revealed that the efficiency of the genetic algorithm can be improved by optimizing the initial population gene pool, selecting a higher individual retention rate and a lower mutation rate. The results presented in this paper validate the effectiveness of genetic algorithm in accelerating the exploration of γ-GYNRs with high thermoelectric conversion efficiency, and could provide a new development solution for carbon-based thermoelectric materials.展开更多
Distributed genetic algorithm can be combined with the adaptive genetic algorithm for mining the interesting and comprehensible classification rules.The paper gives the method to encode for the rules,the fitness funct...Distributed genetic algorithm can be combined with the adaptive genetic algorithm for mining the interesting and comprehensible classification rules.The paper gives the method to encode for the rules,the fitness function,the selecting,crossover,mutation and migration operator for the DAGA at the same time are designed.展开更多
Novel neuro-fuzzy techniques are used to dynamically control parameter settings ofgenetic algorithms (GAs).The benchmark routine is an adaptive genetic algorithm (AGA) that uses afuzzy knowledge-based system to contro...Novel neuro-fuzzy techniques are used to dynamically control parameter settings ofgenetic algorithms (GAs).The benchmark routine is an adaptive genetic algorithm (AGA) that uses afuzzy knowledge-based system to control GA parameters.The self-learning ability of the cerebellar modelariculation controller (CMAC) neural network makes it possible for on-line learning the knowledge onGAs throughout the run.Automatically designing and tuning the fuzzy knowledge-base system,neuro-fuzzy techniques based on CMAC can find the optimized fuzzy system for AGA by the renhanced learningmethod.The Results from initial experiments show a Dynamic Parametric AGA system designed by theproposed automatic method and indicate the general applicability of the neuro-fuzzy AGA to a widerange of combinatorial optimization.展开更多
To improve the measurement accuracy of structured laser for inner surface dimensions of a deep hole, a new method to extract the laser stripe center line is proposed. An improved adaptive genetic algorithm that can co...To improve the measurement accuracy of structured laser for inner surface dimensions of a deep hole, a new method to extract the laser stripe center line is proposed. An improved adaptive genetic algorithm that can converge rapidly and search the global optimum is used to determine the threshold for the laser stripe segmentation. And then NURBS interpolation which has a good local control capability is adopted to extract the laser stripe center line. Experiments show that the extracted laser stripe center line is stable and the diameter of the deep hole can be measured accurately.展开更多
Aiming at the demand for optimization of hydrodynamic coefficients in submarine's motion equations,an adaptive weight immune genetic algorithm was proposed to optimize hydrodynamic coefficients in motion equations...Aiming at the demand for optimization of hydrodynamic coefficients in submarine's motion equations,an adaptive weight immune genetic algorithm was proposed to optimize hydrodynamic coefficients in motion equations.Some hydrodynamic coefficients of high sensitivity to control and maneuver were chosen as the optimization objects in the algorithm.By using adaptive weight method to determine the weight and target function,the multi-objective optimization could be translated into single-objective optimization.For a certain kind of submarine,three typical maneuvers were chosen to be the objects of study:overshoot maneuver in horizontal plane,overshoot maneuver in vertical plane and turning circle maneuver in horizontal plane.From the results of computer simulations using primal hydrodynamic coefficient and optimized hydrodynamic coefficient,the efficiency of proposed method is proved.展开更多
The convergence of genetic algorithm is mainly determined by its core operation crossover operation. When the objective function is a multiple hump function, traditional genetic algorithms are easily trapped into loca...The convergence of genetic algorithm is mainly determined by its core operation crossover operation. When the objective function is a multiple hump function, traditional genetic algorithms are easily trapped into local optimum, which is called premature conver- gence. In this paper, we propose a new genetic algorithm with improved arithmetic crossover operation based on gradient method. This crossover operation can generate offspring along quasi-gradient direction which is the Steepest descent direction of the value of objective function. The selection operator is also simplified, every individual in the population is given an opportunity to get evolution to avoid complicated selection algorithm. The adaptive mutation operator and the elitist strategy are also applied in this algorithm. The case 4 indicates this algorithm can faster converge to the global optimum and is more stable than the conventional genetic algorithms.展开更多
Real-coded genetic algorithm(RGA)usually meets the demand of consecutive space problem.However,compared with simple genetic algorithm(SGA)RGA also has the inherent disadvantages such as prematurity and slow conver...Real-coded genetic algorithm(RGA)usually meets the demand of consecutive space problem.However,compared with simple genetic algorithm(SGA)RGA also has the inherent disadvantages such as prematurity and slow convergence when the solution is close to the optimum solution.This paper presents an improved real-coded genetic algorithm to increase the computation efficiency and avoid prematurity,especially in the optimization of multi-modal function.In this method,mutation operation and crossover operation are improved.Examples are given to demonstrate its com p utation efficiency and robustness.展开更多
Complex microgrid structures and time-varying conditions, among other factors, cause problems in the mechanical modeling of microgrids, making model-based controller optimization difficult. Therefore, this study propo...Complex microgrid structures and time-varying conditions, among other factors, cause problems in the mechanical modeling of microgrids, making model-based controller optimization difficult. Therefore, this study proposed a secondary frequency adaptive control strategy based on parameter identification, which uses an online parameter identification method to identify the parameters in the microgrid in real-time. The identified parameters are then used in the secondary frequency adaptive controller to optimize the real-time controller performance. The proposed method realizes adaptive optimization of the controller in the microgrid operation state and is applied to a microgrid with unknown parameters to adjust the controller parameters. Finally, a simulation experiment was conducted to verify the model accuracy and the frequency regulation effect of the proposed adaptive control strategy.展开更多
The us of stochastic resonance (SR) can effectively achieve the detection of weak signal in white noise and colored noise. However, SR in chaotic interference is seldom involved. In view of the requirements for the ...The us of stochastic resonance (SR) can effectively achieve the detection of weak signal in white noise and colored noise. However, SR in chaotic interference is seldom involved. In view of the requirements for the detection of weak signal in the actual project and the relationship between the signal, chaotic interference, and nonlinear system in the bistable system, a self-adaptive SR system based on genetic algorithm is designed in this paper. It regards the output signal-to-noise ratio (SNR) as a fitness function and the system parameters are jointly encoded to gain optimal bistable system parameters, then the input signal is processed in the SR system with the optimal system parameters. Experimental results show that the system can keep the best state of SR under the condition of low input SNR, which ensures the effective detection and process of weak signal in low input SNR.展开更多
文摘The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP.
文摘An improved adaptive genetic algorithm is presented in this paper. It primarily includes two modified methods: one is novel adaptive probabilities of crossover and mutation, the other is truncated selection approach. This algorithm has been validated to be superior to the simple genetic algorithm (SGA) by a complicated binary testing function. Then the proposed algorithm is applied to optimizing the planar retrodirective array to reduce the cost of the hardware. The fitness function is discussed in the optimization example. After optimization, the sparse planar retrodirective antenna array keeps excellent retrodirectivity, while the array architecture has been simplified by 34%. The optimized antenna array can replace uniform full array effectively. Results show that this work will gain more engineering benefits in practice.
基金Supported by Basic Research Foundation of National Defence (No. B0203-031)
文摘Multiple genetic algorithms (GAs) need a large population size, which will take a long time for evolution. A new fuzzy adaptive GA is proposed in this paper. This algorithm is more effective in global search while keeping the overall population size constant. The simulation results of function optimization show that with the proposed algorithm, the phenomenon of premature convergence can be overcome effectively, and a satisfying optimization result is obtained.
基金Sponsored by National Nature Science Foundation of China (60575013)
文摘Adaptive signal decomposition is an important signal processing method.The chirp-based signal representation,for example,the Gaussian chirplet decomposition,has been an active research topic in the field of signal processing.A main challenge of the Gaussian chirplet decomposition is the numerical implementation of the matching pursuit,which is an adaptive signal decomposition scheme,and the challenge remains an open research topic.In this paper,a new optimal time-frequency atom search method based on the adaptive genetic algorithm is proposed,aiming to the low precision problem of the traditional methods.Firstly,a discrete formula of finite length time-frequency atom sequence is derived.Secondly,an algorithm based on the adaptive genetic algorithm is described in detail.Finally,a simulation is carried out,and the result displays its validity and stability.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974300,11974299,12074150)the Natural Science Foundation of Hunan Province,China(Grant No.2021JJ30645)+3 种基金Scientific Research Fund of Hunan Provincial Education Department(Grant Nos.20K127,20A503,and 20B582)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT13093)the Hunan Provincial Innovation Foundation for Postgraduate(Grant No.CX20220544)Youth Science and Technology Talent Project of Hunan Province,China(Grant No.2022RC1197)。
文摘The gamma-graphyne nanoribbons(γ-GYNRs) incorporating diamond-shaped segment(DSSs) with excellent thermoelectric properties are systematically investigated by combining nonequilibrium Green’s functions with adaptive genetic algorithm. Our calculations show that the adaptive genetic algorithm is efficient and accurate in the process of identifying structures with excellent thermoelectric performance. In multiple rounds, an average of 476 candidates(only 2.88% of all16512 candidate structures) are calculated to obtain the structures with extremely high thermoelectric conversion efficiency.The room temperature thermoelectric figure of merit(ZT) of the optimal γ-GYNR incorporating DSSs is 1.622, which is about 5.4 times higher than that of pristine γ-GYNR(length 23.693 nm and width 2.660 nm). The significant improvement of thermoelectric performance of the optimal γ-GYNR is mainly attributed to the maximum balance of inhibition of thermal conductance(proactive effect) and reduction of thermal power factor(side effect). Moreover, through exploration of the main variables affecting the genetic algorithm, it is revealed that the efficiency of the genetic algorithm can be improved by optimizing the initial population gene pool, selecting a higher individual retention rate and a lower mutation rate. The results presented in this paper validate the effectiveness of genetic algorithm in accelerating the exploration of γ-GYNRs with high thermoelectric conversion efficiency, and could provide a new development solution for carbon-based thermoelectric materials.
基金National Ethnic Affairs Commission NatureScience Foundation of China(PMZY06004)the Education Science Foundation of Guangxi(2006A-E004)
文摘Distributed genetic algorithm can be combined with the adaptive genetic algorithm for mining the interesting and comprehensible classification rules.The paper gives the method to encode for the rules,the fitness function,the selecting,crossover,mutation and migration operator for the DAGA at the same time are designed.
文摘Novel neuro-fuzzy techniques are used to dynamically control parameter settings ofgenetic algorithms (GAs).The benchmark routine is an adaptive genetic algorithm (AGA) that uses afuzzy knowledge-based system to control GA parameters.The self-learning ability of the cerebellar modelariculation controller (CMAC) neural network makes it possible for on-line learning the knowledge onGAs throughout the run.Automatically designing and tuning the fuzzy knowledge-base system,neuro-fuzzy techniques based on CMAC can find the optimized fuzzy system for AGA by the renhanced learningmethod.The Results from initial experiments show a Dynamic Parametric AGA system designed by theproposed automatic method and indicate the general applicability of the neuro-fuzzy AGA to a widerange of combinatorial optimization.
基金the Excellent Young Teacher Foundation from Ministry of Education (203078)
文摘To improve the measurement accuracy of structured laser for inner surface dimensions of a deep hole, a new method to extract the laser stripe center line is proposed. An improved adaptive genetic algorithm that can converge rapidly and search the global optimum is used to determine the threshold for the laser stripe segmentation. And then NURBS interpolation which has a good local control capability is adopted to extract the laser stripe center line. Experiments show that the extracted laser stripe center line is stable and the diameter of the deep hole can be measured accurately.
文摘Aiming at the demand for optimization of hydrodynamic coefficients in submarine's motion equations,an adaptive weight immune genetic algorithm was proposed to optimize hydrodynamic coefficients in motion equations.Some hydrodynamic coefficients of high sensitivity to control and maneuver were chosen as the optimization objects in the algorithm.By using adaptive weight method to determine the weight and target function,the multi-objective optimization could be translated into single-objective optimization.For a certain kind of submarine,three typical maneuvers were chosen to be the objects of study:overshoot maneuver in horizontal plane,overshoot maneuver in vertical plane and turning circle maneuver in horizontal plane.From the results of computer simulations using primal hydrodynamic coefficient and optimized hydrodynamic coefficient,the efficiency of proposed method is proved.
文摘The convergence of genetic algorithm is mainly determined by its core operation crossover operation. When the objective function is a multiple hump function, traditional genetic algorithms are easily trapped into local optimum, which is called premature conver- gence. In this paper, we propose a new genetic algorithm with improved arithmetic crossover operation based on gradient method. This crossover operation can generate offspring along quasi-gradient direction which is the Steepest descent direction of the value of objective function. The selection operator is also simplified, every individual in the population is given an opportunity to get evolution to avoid complicated selection algorithm. The adaptive mutation operator and the elitist strategy are also applied in this algorithm. The case 4 indicates this algorithm can faster converge to the global optimum and is more stable than the conventional genetic algorithms.
文摘Real-coded genetic algorithm(RGA)usually meets the demand of consecutive space problem.However,compared with simple genetic algorithm(SGA)RGA also has the inherent disadvantages such as prematurity and slow convergence when the solution is close to the optimum solution.This paper presents an improved real-coded genetic algorithm to increase the computation efficiency and avoid prematurity,especially in the optimization of multi-modal function.In this method,mutation operation and crossover operation are improved.Examples are given to demonstrate its com p utation efficiency and robustness.
基金This work was supported by“the Fundamental Research Funds for the Central Universities”(Grant No.PA2022GDGP0032)National Natural Science Foundation of China(51907045).
文摘Complex microgrid structures and time-varying conditions, among other factors, cause problems in the mechanical modeling of microgrids, making model-based controller optimization difficult. Therefore, this study proposed a secondary frequency adaptive control strategy based on parameter identification, which uses an online parameter identification method to identify the parameters in the microgrid in real-time. The identified parameters are then used in the secondary frequency adaptive controller to optimize the real-time controller performance. The proposed method realizes adaptive optimization of the controller in the microgrid operation state and is applied to a microgrid with unknown parameters to adjust the controller parameters. Finally, a simulation experiment was conducted to verify the model accuracy and the frequency regulation effect of the proposed adaptive control strategy.
基金Project supported by the National Natural Science Foundation of China(Grant No.61271011)
文摘The us of stochastic resonance (SR) can effectively achieve the detection of weak signal in white noise and colored noise. However, SR in chaotic interference is seldom involved. In view of the requirements for the detection of weak signal in the actual project and the relationship between the signal, chaotic interference, and nonlinear system in the bistable system, a self-adaptive SR system based on genetic algorithm is designed in this paper. It regards the output signal-to-noise ratio (SNR) as a fitness function and the system parameters are jointly encoded to gain optimal bistable system parameters, then the input signal is processed in the SR system with the optimal system parameters. Experimental results show that the system can keep the best state of SR under the condition of low input SNR, which ensures the effective detection and process of weak signal in low input SNR.