A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely no...A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely not all jobs can be scheduled within specified scheduling horizons due to the limited machine capacity. The objective is thus to maximize the overall profits of processed jobs while respecting machine constraints. A first-in- first-out heuristic is applied to find an initial solution, and then a large neighborhood search procedure is employed to relax and re- optimize cumbersome solutions. A machine learning mechanism is also introduced to converge on the most efficient neighborhoods for the problem. Extensive computational results are presented based on data from an application involving the daily observation scheduling of a fleet of earth observing satellites. The method rapidly solves most problem instances to optimal or near optimal and shows a robust performance in sensitive analysis.展开更多
针对人工蜂群(ABC)算法开发能力弱的缺点,提出一种基于适应度分割机制和自适应搜索策略的ABC算法(FSABC)。首先,在雇佣蜂和跟随蜂阶段开始前,根据适应度值将种群划分为高适应度子种群和低适应度子种群,并通过动态调整子种群大小,更好地...针对人工蜂群(ABC)算法开发能力弱的缺点,提出一种基于适应度分割机制和自适应搜索策略的ABC算法(FSABC)。首先,在雇佣蜂和跟随蜂阶段开始前,根据适应度值将种群划分为高适应度子种群和低适应度子种群,并通过动态调整子种群大小,更好地平衡算法的开发性和探索性,并更合理地分配搜索资源;其次,对跟随蜂中的高适应度子种群提出一个策略池和一种新的自适应搜索方式,以避免算法陷入局部最优解;再次,为了加强算法的开发能力,根据高适应度子种群的特点,设计一个新的搜索策略和一个策略池,以发挥该子种群的优势,从而提高算法的性能;最后,对于复杂的多峰问题,在适应度景观中存在许多局部最优解,其中一些可能接近全局最优解,因此,搜索一个好的解的邻域将有助于找到更好的解,甚至可能找到全局最优解,鉴于此,使用一个邻域搜索算子加强算法的开发能力。基于22个经典测试函数进行比较实验的结果表明,在30维和50维问题上,与ABCLGII(ABC algorithm with Local and Global Information Interaction)相比,所提算法的Friedman检验的秩次等级分别提高了30.8%和11.7%,可见,所提算法的性能求解精度更优,并能有效处理全局数值优化问题。展开更多
The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a nove...The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.展开更多
基金supported by the National Natural Science Foundation of China (7060103570801062)
文摘A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely not all jobs can be scheduled within specified scheduling horizons due to the limited machine capacity. The objective is thus to maximize the overall profits of processed jobs while respecting machine constraints. A first-in- first-out heuristic is applied to find an initial solution, and then a large neighborhood search procedure is employed to relax and re- optimize cumbersome solutions. A machine learning mechanism is also introduced to converge on the most efficient neighborhoods for the problem. Extensive computational results are presented based on data from an application involving the daily observation scheduling of a fleet of earth observing satellites. The method rapidly solves most problem instances to optimal or near optimal and shows a robust performance in sensitive analysis.
文摘针对人工蜂群(ABC)算法开发能力弱的缺点,提出一种基于适应度分割机制和自适应搜索策略的ABC算法(FSABC)。首先,在雇佣蜂和跟随蜂阶段开始前,根据适应度值将种群划分为高适应度子种群和低适应度子种群,并通过动态调整子种群大小,更好地平衡算法的开发性和探索性,并更合理地分配搜索资源;其次,对跟随蜂中的高适应度子种群提出一个策略池和一种新的自适应搜索方式,以避免算法陷入局部最优解;再次,为了加强算法的开发能力,根据高适应度子种群的特点,设计一个新的搜索策略和一个策略池,以发挥该子种群的优势,从而提高算法的性能;最后,对于复杂的多峰问题,在适应度景观中存在许多局部最优解,其中一些可能接近全局最优解,因此,搜索一个好的解的邻域将有助于找到更好的解,甚至可能找到全局最优解,鉴于此,使用一个邻域搜索算子加强算法的开发能力。基于22个经典测试函数进行比较实验的结果表明,在30维和50维问题上,与ABCLGII(ABC algorithm with Local and Global Information Interaction)相比,所提算法的Friedman检验的秩次等级分别提高了30.8%和11.7%,可见,所提算法的性能求解精度更优,并能有效处理全局数值优化问题。
基金Fundamental Research Funds for the Central Universities(2024JBZX038)National Natural Science F oundation of China(62076023)。
文摘The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.