The formation maintenance of multiple unmanned aerial vehicles(UAVs)based on proximity behavior is explored in this study.Individual decision-making is conducted according to the expected UAV formation structure and t...The formation maintenance of multiple unmanned aerial vehicles(UAVs)based on proximity behavior is explored in this study.Individual decision-making is conducted according to the expected UAV formation structure and the position,velocity,and attitude information of other UAVs in the azimuth area.This resolves problems wherein nodes are necessarily strongly connected and communication is strictly consistent under the traditional distributed formation control method.An adaptive distributed formation flight strategy is established for multiple UAVs by exploiting proximity behavior observations,which remedies the poor flexibility in distributed formation.This technique ensures consistent position and attitude among UAVs.In the proposed method,the azimuth area relative to the UAV itself is established to capture the state information of proximal UAVs.The dependency degree factor is introduced to state update equation based on proximity behavior.Finally,the formation position,speed,and attitude errors are used to form an adaptive dynamic adjustment strategy.Simulations are conducted to demonstrate the effectiveness and robustness of the theoretical results,thus validating the effectiveness of the proposed method.展开更多
The utilization of biomimicry of bacterial foraging strategy was considered to develop an adaptive control strategy for mobile robot, and a bacterial foraging approach was proposed for robot path planning. In the prop...The utilization of biomimicry of bacterial foraging strategy was considered to develop an adaptive control strategy for mobile robot, and a bacterial foraging approach was proposed for robot path planning. In the proposed model, robot that mimics the behavior of bacteria is able to determine an optimal collision-free path between a start and a target point in the environment surrounded by obstacles. In the simulation, two test scenarios of static environment with different number obstacles were adopted to evaluate the performance of the proposed method. Simulation results show that the robot which reflects the bacterial foraging behavior can adapt to complex environments in the planned trajectories with both satisfactory accuracy and stability.展开更多
文摘The formation maintenance of multiple unmanned aerial vehicles(UAVs)based on proximity behavior is explored in this study.Individual decision-making is conducted according to the expected UAV formation structure and the position,velocity,and attitude information of other UAVs in the azimuth area.This resolves problems wherein nodes are necessarily strongly connected and communication is strictly consistent under the traditional distributed formation control method.An adaptive distributed formation flight strategy is established for multiple UAVs by exploiting proximity behavior observations,which remedies the poor flexibility in distributed formation.This technique ensures consistent position and attitude among UAVs.In the proposed method,the azimuth area relative to the UAV itself is established to capture the state information of proximal UAVs.The dependency degree factor is introduced to state update equation based on proximity behavior.Finally,the formation position,speed,and attitude errors are used to form an adaptive dynamic adjustment strategy.Simulations are conducted to demonstrate the effectiveness and robustness of the theoretical results,thus validating the effectiveness of the proposed method.
基金Project(61173032)supported by the National Natural Science Foundation of ChinaProject(20090406)supported by the Tianjin Scientific and Technological Development Fund of Higher Education of China
文摘The utilization of biomimicry of bacterial foraging strategy was considered to develop an adaptive control strategy for mobile robot, and a bacterial foraging approach was proposed for robot path planning. In the proposed model, robot that mimics the behavior of bacteria is able to determine an optimal collision-free path between a start and a target point in the environment surrounded by obstacles. In the simulation, two test scenarios of static environment with different number obstacles were adopted to evaluate the performance of the proposed method. Simulation results show that the robot which reflects the bacterial foraging behavior can adapt to complex environments in the planned trajectories with both satisfactory accuracy and stability.