Mobile ad hoc networks are particularly vulnerable to denial of service (DOS) attacks launched through compromised nodes or intruders. In this paper, we present a new DOS attack and its defense in ad hoc networks. T...Mobile ad hoc networks are particularly vulnerable to denial of service (DOS) attacks launched through compromised nodes or intruders. In this paper, we present a new DOS attack and its defense in ad hoc networks. The new DOS attack, called AA hoc Flooding Attack(AHFA), is that intruder broadcasts mass Route Request packets to exhaust the communication bandwidth and node resource so that the valid communication can not be kept. After analyzed AM hoc Flooding Attack, we develop Flooding Attack Prevention (FAP), a genetic defense against the AM hoc Flooding Attack. When the intruder broadcasts exceeding packets of Route Request, the immediate neighbors of the intruder record the rate of Route Request. Once the threshold is exceeded, nodes deny any future request packets from the intruder. The results of our implementation show FAP can prevent the AM hoe Flooding attack efficiently.展开更多
A novel reliable routing algorithm in mobile ad hoc networks using fuzzy Petri net with its reasoning mechanism was proposed to increase the reliability during the routing selection. The algorithm allows the structure...A novel reliable routing algorithm in mobile ad hoc networks using fuzzy Petri net with its reasoning mechanism was proposed to increase the reliability during the routing selection. The algorithm allows the structured representation of network topology, which has a fuzzy reasoning mechanism for finding the routing sprouting tree from the source node to the destination node in the mobile ad boc environment. Finally, by comparing the degree of reliability in the routing sprouting tree, the most reliable route can be computed. The algorithm not only offers the local reliability between each neighboring node, but also provides global reliability for the whole selected route. The algorithm can be applied to most existing on-demand routing protocols, and the simulation results show that the routing reliability is increased by more than 80% when applying the proposed algorithm to the ad hoc on demand distance vector routing protocol.展开更多
基金This project was supported by the National"863"High Technology Development Programof China (2003AA148010) Key Technologies R&D Programof China (2002DA103A03 -07)
文摘Mobile ad hoc networks are particularly vulnerable to denial of service (DOS) attacks launched through compromised nodes or intruders. In this paper, we present a new DOS attack and its defense in ad hoc networks. The new DOS attack, called AA hoc Flooding Attack(AHFA), is that intruder broadcasts mass Route Request packets to exhaust the communication bandwidth and node resource so that the valid communication can not be kept. After analyzed AM hoc Flooding Attack, we develop Flooding Attack Prevention (FAP), a genetic defense against the AM hoc Flooding Attack. When the intruder broadcasts exceeding packets of Route Request, the immediate neighbors of the intruder record the rate of Route Request. Once the threshold is exceeded, nodes deny any future request packets from the intruder. The results of our implementation show FAP can prevent the AM hoe Flooding attack efficiently.
文摘A novel reliable routing algorithm in mobile ad hoc networks using fuzzy Petri net with its reasoning mechanism was proposed to increase the reliability during the routing selection. The algorithm allows the structured representation of network topology, which has a fuzzy reasoning mechanism for finding the routing sprouting tree from the source node to the destination node in the mobile ad boc environment. Finally, by comparing the degree of reliability in the routing sprouting tree, the most reliable route can be computed. The algorithm not only offers the local reliability between each neighboring node, but also provides global reliability for the whole selected route. The algorithm can be applied to most existing on-demand routing protocols, and the simulation results show that the routing reliability is increased by more than 80% when applying the proposed algorithm to the ad hoc on demand distance vector routing protocol.