RFID-based human activity recognition(HAR)attracts attention due to its convenience,noninvasiveness,and privacy protection.Existing RFID-based HAR methods use modeling,CNN,or LSTM to extract features effectively.Still...RFID-based human activity recognition(HAR)attracts attention due to its convenience,noninvasiveness,and privacy protection.Existing RFID-based HAR methods use modeling,CNN,or LSTM to extract features effectively.Still,they have shortcomings:1)requiring complex hand-crafted data cleaning processes and 2)only addressing single-person activity recognition based on specific RF signals.To solve these problems,this paper proposes a novel device-free method based on Time-streaming Multiscale Transformer called TransTM.This model leverages the Transformer's powerful data fitting capabilities to take raw RFID RSSI data as input without pre-processing.Concretely,we propose a multiscale convolutional hybrid Transformer to capture behavioral features that recognizes singlehuman activities and human-to-human interactions.Compared with existing CNN-and LSTM-based methods,the Transformer-based method has more data fitting power,generalization,and scalability.Furthermore,using RF signals,our method achieves an excellent classification effect on human behaviorbased classification tasks.Experimental results on the actual RFID datasets show that this model achieves a high average recognition accuracy(99.1%).The dataset we collected for detecting RFID-based indoor human activities will be published.展开更多
We study the problem of humanactivity recognition from RGB-Depth(RGBD)sensors when the skeletons are not available.The skeleton tracking in Kinect SDK workswell when the human subject is facing thecamera and there are...We study the problem of humanactivity recognition from RGB-Depth(RGBD)sensors when the skeletons are not available.The skeleton tracking in Kinect SDK workswell when the human subject is facing thecamera and there are no occlusions.In surveillance or nursing home monitoring scenarios,however,the camera is usually mounted higher than human subjects,and there may beocclusions.The interest-point based approachis widely used in RGB based activity recognition,it can be used in both RGB and depthchannels.Whether we should extract interestpoints independently of each channel or extract interest points from only one of thechannels is discussed in this paper.The goal ofthis paper is to compare the performances ofdifferent methods of extracting interest points.In addition,we have developed a depth mapbased descriptor and built an RGBD dataset,called RGBD-SAR,for senior activity recognition.We show that the best performance isachieved when we extract interest points solely from RGB channels,and combine the RGBbased descriptors with the depth map-baseddescriptors.We also present a baseline performance of the RGBD-SAR dataset.展开更多
Activity recognition plays a key role in health management and security.Traditional approaches are based on vision or wearables,which only work under the line of sight(LOS)or require the targets to carry dedicated dev...Activity recognition plays a key role in health management and security.Traditional approaches are based on vision or wearables,which only work under the line of sight(LOS)or require the targets to carry dedicated devices.As human bodies and their movements have influences on WiFi propagation,this paper proposes the recognition of human activities by analyzing the channel state information(CSI)from the WiFi physical layer.The method requires only the commodity:WiFi transmitters and receivers that can operate through a wall,under LOS and non-line of sight(NLOS),while the targets are not required to carry dedicated devices.After collecting CSI,the discrete wavelet transform is applied to reduce the noise,followed by outlier detection based on the local outlier factor to extract the activity segment.Activity recognition is fulfilled by using the bi-directional long short-term memory that takes the sequential features into consideration.Experiments in through-the-wall environments achieve recognition accuracy>95%for six common activities,such as standing up,squatting down,walking,running,jumping,and falling,outperforming existing work in this field.展开更多
Activity and motion recognition using Wi-Fi signals,mainly channel state information(CSI),has captured the interest of many researchers in recent years.Many research studies have achieved splendid results with the hel...Activity and motion recognition using Wi-Fi signals,mainly channel state information(CSI),has captured the interest of many researchers in recent years.Many research studies have achieved splendid results with the help of machine learning models from different applications such as healthcare services,sign language translation,security,context awareness,and the internet of things.Nevertheless,most of these adopted studies have some shortcomings in the machine learning algorithms as they rely on recurrence and convolutions and,thus,precluding smooth sequential computation.Therefore,in this paper,we propose a deep-learning approach based solely on attention,i.e.,the sole Self-Attention Mechanism model(Sole-SAM),for activity and motion recognition using Wi-Fi signals.The Sole-SAM was deployed to learn the features representing different activities and motions from the raw CSI data.Experiments were carried out to evaluate the performance of the proposed Sole-SAM architecture.The experimental results indicated that our proposed system took significantly less time to train than models that rely on recurrence and convolutions like Long Short-Term Memory(LSTM)and Recurrent Neural Network(RNN).Sole-SAM archived a 0.94%accuracy level,which is 0.04%better than RNN and 0.02%better than LSTM.展开更多
A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning.Non-sampled dual-tree complex wavelet pac...A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning.Non-sampled dual-tree complex wavelet packet transform(NS-DTCWPT)is used to decompose the human images in videos into multi-scale and multi-resolution.An improved local binary pattern(ILBP)and an inner-distance shape context(IDSC)combined with bag-of-words model is adopted to extract the decomposed high and low frequency coefficient features.The extracted coefficient features of the training samples are used to optimize Cayley-Klein metric matrix by solving a nonlinear optimization problem.The group activities in videos are recognized by using the method of feature extraction and Cayley-Klein metric learning.Experimental results on behave video set,group activity video set,and self-built video set show that the proposed algorithm has higher recognition accuracy than the existing algorithms.展开更多
With the development of the Internet of Things(Io T), people's lives have become increasingly convenient. It is desirable for smart home(SH) systems to integrate and leverage the enormous information available fro...With the development of the Internet of Things(Io T), people's lives have become increasingly convenient. It is desirable for smart home(SH) systems to integrate and leverage the enormous information available from IoT. Information can be analyzed to learn user intentions and automatically provide the appropriate services. However, existing service recommendation models typically do not consider the services that are unavailable in a user's living environment. In order to address this problem, we propose a series of semantic models for SH devices. These semantic models can be used to infer user intentions. Based on the models, we proposed a service recommendation probability model and an alternative-service recommending algorithm. The algorithm is devoted to providing appropriate alternative services when the desired service is unavailable. The algorithm has been implemented and achieves accuracy higher than traditional Hidden Markov Model(HMM). The maximum accuracy achieved is 68.3%.展开更多
基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDC02040300)for this study.
文摘RFID-based human activity recognition(HAR)attracts attention due to its convenience,noninvasiveness,and privacy protection.Existing RFID-based HAR methods use modeling,CNN,or LSTM to extract features effectively.Still,they have shortcomings:1)requiring complex hand-crafted data cleaning processes and 2)only addressing single-person activity recognition based on specific RF signals.To solve these problems,this paper proposes a novel device-free method based on Time-streaming Multiscale Transformer called TransTM.This model leverages the Transformer's powerful data fitting capabilities to take raw RFID RSSI data as input without pre-processing.Concretely,we propose a multiscale convolutional hybrid Transformer to capture behavioral features that recognizes singlehuman activities and human-to-human interactions.Compared with existing CNN-and LSTM-based methods,the Transformer-based method has more data fitting power,generalization,and scalability.Furthermore,using RF signals,our method achieves an excellent classification effect on human behaviorbased classification tasks.Experimental results on the actual RFID datasets show that this model achieves a high average recognition accuracy(99.1%).The dataset we collected for detecting RFID-based indoor human activities will be published.
基金supported by the National Natural Science Foundation of China under Grants No.61075045,No.61273256the Program for New Century Excellent Talents in University under Grant No.NECT-10-0292+1 种基金the National Key Basic Research Program of China(973Program)under Grant No.2011-CB707000the Fundamental Research Funds for the Central Universities
文摘We study the problem of humanactivity recognition from RGB-Depth(RGBD)sensors when the skeletons are not available.The skeleton tracking in Kinect SDK workswell when the human subject is facing thecamera and there are no occlusions.In surveillance or nursing home monitoring scenarios,however,the camera is usually mounted higher than human subjects,and there may beocclusions.The interest-point based approachis widely used in RGB based activity recognition,it can be used in both RGB and depthchannels.Whether we should extract interestpoints independently of each channel or extract interest points from only one of thechannels is discussed in this paper.The goal ofthis paper is to compare the performances ofdifferent methods of extracting interest points.In addition,we have developed a depth mapbased descriptor and built an RGBD dataset,called RGBD-SAR,for senior activity recognition.We show that the best performance isachieved when we extract interest points solely from RGB channels,and combine the RGBbased descriptors with the depth map-baseddescriptors.We also present a baseline performance of the RGBD-SAR dataset.
基金the Key Research and Development Projects of Sichuan Science and Technology Department under Grant No.2018GZ0464the UESTC-ZHIXIAOJING Joint Research Center of Smart Home under Grant No.H04W210180.
文摘Activity recognition plays a key role in health management and security.Traditional approaches are based on vision or wearables,which only work under the line of sight(LOS)or require the targets to carry dedicated devices.As human bodies and their movements have influences on WiFi propagation,this paper proposes the recognition of human activities by analyzing the channel state information(CSI)from the WiFi physical layer.The method requires only the commodity:WiFi transmitters and receivers that can operate through a wall,under LOS and non-line of sight(NLOS),while the targets are not required to carry dedicated devices.After collecting CSI,the discrete wavelet transform is applied to reduce the noise,followed by outlier detection based on the local outlier factor to extract the activity segment.Activity recognition is fulfilled by using the bi-directional long short-term memory that takes the sequential features into consideration.Experiments in through-the-wall environments achieve recognition accuracy>95%for six common activities,such as standing up,squatting down,walking,running,jumping,and falling,outperforming existing work in this field.
基金This work was supported by Foshan Science and Technology Innovation Special Fund Project(No.BK22BF004 and No.BK20AF004),Guangdong Province,China.
文摘Activity and motion recognition using Wi-Fi signals,mainly channel state information(CSI),has captured the interest of many researchers in recent years.Many research studies have achieved splendid results with the help of machine learning models from different applications such as healthcare services,sign language translation,security,context awareness,and the internet of things.Nevertheless,most of these adopted studies have some shortcomings in the machine learning algorithms as they rely on recurrence and convolutions and,thus,precluding smooth sequential computation.Therefore,in this paper,we propose a deep-learning approach based solely on attention,i.e.,the sole Self-Attention Mechanism model(Sole-SAM),for activity and motion recognition using Wi-Fi signals.The Sole-SAM was deployed to learn the features representing different activities and motions from the raw CSI data.Experiments were carried out to evaluate the performance of the proposed Sole-SAM architecture.The experimental results indicated that our proposed system took significantly less time to train than models that rely on recurrence and convolutions like Long Short-Term Memory(LSTM)and Recurrent Neural Network(RNN).Sole-SAM archived a 0.94%accuracy level,which is 0.04%better than RNN and 0.02%better than LSTM.
基金Supported by the National Natural Science Foundation of China(61672032,61401001)the Natural Science Foundation of Anhui Province(1408085MF121)the Opening Foundation of Anhui Key Laboratory of Polarization Imaging Detection Technology(2016-KFKT-003)
文摘A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning.Non-sampled dual-tree complex wavelet packet transform(NS-DTCWPT)is used to decompose the human images in videos into multi-scale and multi-resolution.An improved local binary pattern(ILBP)and an inner-distance shape context(IDSC)combined with bag-of-words model is adopted to extract the decomposed high and low frequency coefficient features.The extracted coefficient features of the training samples are used to optimize Cayley-Klein metric matrix by solving a nonlinear optimization problem.The group activities in videos are recognized by using the method of feature extraction and Cayley-Klein metric learning.Experimental results on behave video set,group activity video set,and self-built video set show that the proposed algorithm has higher recognition accuracy than the existing algorithms.
基金supported by the National Key Research and Development Program(No.2016YFB0800302)
文摘With the development of the Internet of Things(Io T), people's lives have become increasingly convenient. It is desirable for smart home(SH) systems to integrate and leverage the enormous information available from IoT. Information can be analyzed to learn user intentions and automatically provide the appropriate services. However, existing service recommendation models typically do not consider the services that are unavailable in a user's living environment. In order to address this problem, we propose a series of semantic models for SH devices. These semantic models can be used to infer user intentions. Based on the models, we proposed a service recommendation probability model and an alternative-service recommending algorithm. The algorithm is devoted to providing appropriate alternative services when the desired service is unavailable. The algorithm has been implemented and achieves accuracy higher than traditional Hidden Markov Model(HMM). The maximum accuracy achieved is 68.3%.