期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Numerical analysis of behavior of active layer in rotary kilns by discrete element method 被引量:3
1
作者 谢知音 冯俊小 《Journal of Central South University》 SCIE EI CAS 2013年第3期634-639,共6页
The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications.To obtain its influences on industrial process,different regimes of particle motion have been simulated ... The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications.To obtain its influences on industrial process,different regimes of particle motion have been simulated by discrete element method(DEM) in three dimensions under variant rotation speeds,filling degree,based on the background of induration process of iron ore pellets.The influences of the mentioned factors on the maximum thickness of the active layer and the average velocity of particles have been investigated.The average velocity of particles increases with Froude number following the power function over a wide range,and the maximum thickness rises with increasing rotation speed in a way of logarithm.The influence of the filling degree f on the maximum thickness exhibits a good linearity under two classic regimes,but the increasing of the average velocity of the active layer is limited at f=0.4.This basic research highlights the impact of the active layer within rotary kilns,and lays a good foundation for the further investigation in mixing and heat transfer within the particle bed inside rotary kilns. 展开更多
关键词 rotary kiln particle motion discrete element method active layer
在线阅读 下载PDF
Influence of active constrained layer damping on the coupled vibration response of functionally graded magneto-electro-elastic plates with skewed edges 被引量:3
2
作者 M.Vinyas D.Harursampath T.Nguyen-Thoi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第5期1019-1038,共20页
This article makes the first attempt in assessing the influence of active constrained layer damping(ACLD)treatment towards precise control of frequency responses of functionally graded skew-magneto-electroelastic(FGSM... This article makes the first attempt in assessing the influence of active constrained layer damping(ACLD)treatment towards precise control of frequency responses of functionally graded skew-magneto-electroelastic(FGSMEE)plates by employing finite element methods.The materials are functionally graded across the thickness of the plate in terms of modest power-law distributions.The principal equations of motion of FGSMEE are derived via Hamilton’s principle and solved using condensation technique.The effect of ACLD patches are modelled by following the complex modulus approach(CMA).Additionally,distinctive emphasis is laid to evaluate the influence of geometrical skewness on the attenuation capabilities of the plate.The accuracy of the current analysis is corroborated with comparison of previous researches of similar kind.Additionally,a complete parametric study is directed to understand the combined impacts of various factors like coupling fields,patch location,fiber orientation of piezoelectric patch in association with skew angle and power-law index. 展开更多
关键词 Vibration control Functionally graded MEE plates Skew angle active constrained layer damping(ACLD) PATCHES
在线阅读 下载PDF
Effect of porosity on active damping of geometrically nonlinear vibrations of a functionally graded magneto-electro-elastic plate
3
作者 L.Sh Esayas Subhaschandra Kattimani 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第6期891-906,共16页
This paper investigates the effect of porosity on active damping of geometrically nonlinear vibrations(GNLV)of the magneto-electro-elastic(MEE)functionally graded(FG)plates incorporated with active treatment constrict... This paper investigates the effect of porosity on active damping of geometrically nonlinear vibrations(GNLV)of the magneto-electro-elastic(MEE)functionally graded(FG)plates incorporated with active treatment constricted layer damping(ATCLD)patches.The perpendicularly/slanted reinforced 1-3 piezoelectric composite(1-3 PZC)constricting layer.The constricted viscoelastic layer of the ATCLD is modeled in the time-domain using Golla-Hughes-Mc Tavish(GHM)technique.Different types of porosity distribution in the porous magneto-electro-elastic functionally graded PMEE-FG plate graded in the thickness direction.Considering the coupling effects among elasticity,electrical,and magnetic fields,a three-dimensional finite element(FE)model for the smart PMEE-FG plate is obtained by incorporating the theory of layer-wise shear deformation.The geometric nonlinearity adopts the von K arm an principle.The study presents the effects of a variant of a power-law index,porosity index,the material gradation,three types of porosity distribution,boundary conditions,and the piezoelectric fiber’s orientation angle on the control of GNLV of the PMEE-FG plates.The results reveal that the FG substrate layers’porosity significantly impacts the nonlinear behavior and damping performance of the PMEE-FG plates. 展开更多
关键词 Nonlinear vibration Magneto-electro-elastic(MEE)plates active treatment constricted layer damping(ATCLD) Porosity distribution Porous functionally graded
在线阅读 下载PDF
Ti_(3)C_(2)T_(x) MXene for organic/perovskite optoelectronic devices 被引量:1
4
作者 CHEN Ke-fan CAI Ping +3 位作者 PENG Hong-liang XUE Xiao-gang WANG Zhong-min SUN Li-xian 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3935-3958,共24页
MXenes are emerging two-dimensional(2D)nanomaterials composed of transition metal carbides and/or nitrides and possess unique layered structures with abundant surface functional groups,which enable them with excellent... MXenes are emerging two-dimensional(2D)nanomaterials composed of transition metal carbides and/or nitrides and possess unique layered structures with abundant surface functional groups,which enable them with excellent and tunable properties.MXenes films can be solution-processed in polar solvents and are very suitable for optoelectronic device applications.Especially,Ti_(3)C_(2)T_(x) MXene with the clear advantages of facile synthesis,flexible surface controlling,easily tunable work function,high optical transmittance and excellent conductivity shows great potential for applications in organic/perovskite optoelectronic devices.Therefore,this review briefly introduces the mainstream synthesis methods,optical and electrical properties of MXenes,and comprehensively summarizes the versatile applications of Ti_(3)C_(2)T_(x) MXene in different functional layers(electrode,interface layer and active layer)of organic/perovskite optoelectronic devices including solar cells and light-emitting diodes.Finally,the current application characteristics and the future possibilities of MXenes in organic/perovskite optoelectronic devices are concluded and discussed. 展开更多
关键词 Ti_(3)C_(2)T_(x)MXene organic/perovskite solar cells organic/perovskite light-emitting diodes ELECTRODE interface layer active layer
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部