Owing to the ubiquity of wireless networks and the popularity of WiFi infrastructures,received signal strength(RSS)-based indoor localization systems have received much attention.The placement of access points(APs)sig...Owing to the ubiquity of wireless networks and the popularity of WiFi infrastructures,received signal strength(RSS)-based indoor localization systems have received much attention.The placement of access points(APs)significantly influences localization accuracy and network access.However,the indoor scenario and network access are not fully considered in previous AP placement optimization methods.This study proposes a practical scenario modelingaided AP placement optimization method for improving localization accuracy and network access.In order to reduce the gap between simulation-based and field measurement-based AP placement optimization methods,we introduce an indoor scenario modeling and Gaussian process-based RSS prediction method.After that,the localization and network access metrics are implemented in the multiple objective particle swarm optimization(MOPSO)solution,Pareto front criterion and virtual repulsion force are applied to determine the optimal AP placement.Finally,field experiments demonstrate the effectiveness of the proposed indoor scenario modeling method and RSS prediction model.A thorough comparison confirms the localization and network access improvement attributed to the proposed anchor placement method.展开更多
Intensely using online social networks(OSNs)makes users concerned about privacy of data.Given the centralized nature of these platforms,and since each platform has a particular storage mechanism,authentication,and acc...Intensely using online social networks(OSNs)makes users concerned about privacy of data.Given the centralized nature of these platforms,and since each platform has a particular storage mechanism,authentication,and access control,their users do not have the control and the right over their data.Therefore,users cannot easily switch between similar platforms or transfer data from one platform to another.These issues imply,among other things,a threat to privacy since such users depend on the interests of the service provider responsible for administering OSNs.As a strategy for the decentralization of the OSNs and,consequently,as a solution to the privacy problems in these environments,the so-called decentralized online social networks(DOSNs)have emerged.Unlike OSNs,DOSNs are decentralized content management platforms because they do not use centralized service providers.Although DOSNs address some of the privacy issues encountered in OSNs,DOSNs also pose significant challenges to consider,for example,access control to user profile information with high granularity.This work proposes developing an ontological model and a service to support privacy in DOSNs.The model describes the main concepts of privacy access control in DOSNs and their relationships.In addition,the service will consume the model to apply access control according to the policies represented in the model.Our model was evaluated in two phases to verify its compliance with the proposed domain.Finally,we evaluated our service with a performance evaluation,and the results were satisfactory concerning the response time of access control requests.展开更多
With the deployment of ultra-dense low earth orbit(LEO)satellite constellations,LEO satellite access network(LEO-SAN)is envisioned to achieve global Internet coverage.Meanwhile,the civil aviation communications have i...With the deployment of ultra-dense low earth orbit(LEO)satellite constellations,LEO satellite access network(LEO-SAN)is envisioned to achieve global Internet coverage.Meanwhile,the civil aviation communications have increased dramatically,especially for providing airborne Internet services.However,due to dynamic service demands and onboard LEO resources over time and space,it poses huge challenges in satellite-aircraft access and service management in ultra-dense LEO satellite networks(UDLSN).In this paper,we propose a deep reinforcement learning-based approach for ultra-dense LEO satellite-aircraft access and service management.Firstly,we develop an airborne Internet architecture based on UDLSN and design a management mechanism including medium earth orbit satellites to guarantee lightweight management.Secondly,considering latency-sensitive and latency-tolerant services,we formulate the problem of satellite-aircraft access and service management for civil aviation to ensure service continuity.Finally,we propose a proximal policy optimization-based access and service management algorithm to solve the formulated problem.Simulation results demonstrate the convergence and effectiveness of the proposed algorithm with satisfying the service continuity when applying to the UDLSN.展开更多
In today's world where everything is interconnected, air-space-ground integrated networks have become a current research hotspot due to their characteristics of high, long and wide area coverage. Given the constan...In today's world where everything is interconnected, air-space-ground integrated networks have become a current research hotspot due to their characteristics of high, long and wide area coverage. Given the constantly changing and dynamic characteristics of air and space networks, along with the sheer number and complexity of access nodes involved, the process of rapid networking presents substantial challenges. In order to achieve rapid and dynamic networking of air-space-ground integrated networks, this paper focuses on the study of methods for large-scale nodes to randomly access satellites. This paper utilizes a cross-layer design methodology to enhance the access success probability by jointly optimizing the physical layer and medium access control(MAC) layer aspects. Load statistics priority random access(LSPRA) technology is proposed.Experiments show that when the number of nodes is greater than 1 000, this method can also ensure stable access performance, providing ideas for the design of air-space-ground integrated network access systems.展开更多
Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understand...Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understanding of friendship paradox is very limited.Only few works provide theoretical evidence of single-step and multi-step friendship paradoxes,given that the neighbors of interest are onehop and multi-hop away from the target node.However,they consider non-evolving networks,as opposed to the topology of real social networks that are constantly growing over time.We are thus motivated to present a first look into friendship paradox in evolving networks,where newly added nodes preferentially attach themselves to those with higher degrees.Our analytical verification of both single-step and multistep friendship paradoxes in evolving networks,along with comparison to the non-evolving counterparts,discloses that“friendship paradox is even more paradoxical in evolving networks”,primarily from three aspects:1)we demonstrate a strengthened effect of single-step friendship paradox in evolving networks,with a larger probability(more than 0.8)of a random node’s neighbors having higher average degree than the random node itself;2)we unravel higher effectiveness of multi-step friendship paradox in seeking for influential nodes in evolving networks,as the rate of reaching the max degree node can be improved by a factor of at least Θ(t^(2/3))with t being the network size;3)we empirically verify our findings through both synthetic and real datasets,which suggest high agreements of results and consolidate the reasonability of evolving model for real social networks.展开更多
In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clu...In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clustering routing base on firefly and pigeon-inspired algorithm(FF-PIA)is proposed to optimise the data transmission path.After having obtained the optimal number of cluster head node(CH),its result might be taken as the basis of producing the initial population of FF-PIA algorithm.The L′evy flight mechanism and adaptive inertia weighting are employed in the algorithm iteration to balance the contradiction between the global search and the local search.Moreover,a Gaussian perturbation strategy is applied to update the optimal solution,ensuring the algorithm can jump out of the local optimal solution.And,in the WSN data gathering,a onedimensional signal reconstruction algorithm model is developed by dilated convolution and residual neural networks(DCRNN).We conducted experiments on the National Oceanic and Atmospheric Administration(NOAA)dataset.It shows that the DCRNN modeldriven data reconstruction algorithm improves the reconstruction accuracy as well as the reconstruction time performance.FF-PIA and DCRNN clustering routing co-simulation reveals that the proposed algorithm can effectively improve the performance in extending the network lifetime and reducing data transmission delay.展开更多
Maximize the resource utilization efficiency and guarantee the quality of service(QoS)of users by selecting the network are the key issues for heterogeneous network operators,but the resources occupied by users in dif...Maximize the resource utilization efficiency and guarantee the quality of service(QoS)of users by selecting the network are the key issues for heterogeneous network operators,but the resources occupied by users in different networks cannot be compared directly.This paper proposes a network selection algorithm for heterogeneous network.Firstly,the concept of equivalent bandwidth is proposed,through which the actual resources occupied by users with certain QoS requirements in different networks can be compared directly.Then the concept of network applicability is defined to express the abilities of networks to support different services.The proposed network selection algorithm first evaluates whether the network has enough equivalent bandwidth required by the user and then prioritizes network with poor applicability to avoid the situation that there are still residual resources in entire network,but advanced services can not be admitted.The simulation results show that the proposed algorithm obtained better performance than the baselines in terms of reducing call blocking probability and improving network resource utilization efficiency.展开更多
Purpose:For a set of 1,561 Open Access(OA)and non-OA journals in business and economics,this study evaluates the relationships between four citation metrics-five-year Impact Factor(5IF),CiteScore,Article Influence(AI)...Purpose:For a set of 1,561 Open Access(OA)and non-OA journals in business and economics,this study evaluates the relationships between four citation metrics-five-year Impact Factor(5IF),CiteScore,Article Influence(AI)score,and SCImago Journal Rank(SJR)-and the journal ratings assigned by expert reviewers.We expect that the OA journals will have especially high citation impact relative to their perceived quality(reputation).Design/methodology/approach:Regression is used to estimate the ratings assigned by expert reviewers for the 2021 CABS(Chartered Association of Business Schools)journal assessment exercise.The independent variables are the four citation metrics,evaluated separately,and a dummy variable representing the OA/non-OA status of each journal.Findings:Regardless of the citation metric used,OA journals in business and economics have especially high citation impact relative to their perceived quality(reputation).That is,they have especially low perceived quality(reputation)relative to their citation impact.Research limitations:These results are specific to the CABS journal ratings and the four citation metrics.However,there is strong evidence that CABS is closely related to several other expert ratings,and that 5IF,CiteScore,AI,and SJR are representative of the other citation metrics that might have been chosen.Practical implications:There are at least two possible explanations for these results:(1)expert evaluators are biased against OA journals,and(2)OA journals have especially high citation impact due to their increased accessibility.Although this study does not allow us to determine which of these explanations are supported,the results suggest that authors should consider publishing in OA journals whenever overall readership and citation impact are more important than journal reputation within a particular field.Moreover,the OA coefficients provide a useful indicator of the extent to which anti-OA bias(or the citation advantage of OA journals)is diminishing over time.Originality/value:This is apparently the first study to investigate the impact of OA status on the relationships between expert journal ratings and journal citation metrics.展开更多
With the coming of digital era,profound changes are happening in communication field.Within these,non-terrestrial network(NTN)is considered as a leading-edge technology.NTN not only represents an innovation,but also s...With the coming of digital era,profound changes are happening in communication field.Within these,non-terrestrial network(NTN)is considered as a leading-edge technology.NTN not only represents an innovation,but also signifies the main development trend of future global communication.As a layered heterogeneous network,NTN will integrate multiple communication platforms,including satellites,high altitude platform systems(HAPS),and unmanned aerial systems(UAS),these provide flexible and composable solutions for achieving ubiquitous global communication coverage.展开更多
Moringa oleifera have laxative effects,but their active compositions and mechanisms are not very clear thus far.To this end,we systematically explored the active components and mechanism of M.oleifera leaves in reliev...Moringa oleifera have laxative effects,but their active compositions and mechanisms are not very clear thus far.To this end,we systematically explored the active components and mechanism of M.oleifera leaves in relieving constipation by using the slow transit constipation(STC)mouse model and network pharmacology.The results of animal experiments showed that M.oleifera aqueous extract(MOA)had good laxative activity,and its 70%alcohol soluble part(ASP)also showed significant laxative activity(P<0.01).Network pharmacological prediction results suggested that L-phenylalanine(Phe)was the key compound of ASP,and it might relieve constipation through tachykinin receptor 1(TACR1)and three kinds of adrenergic receptors,includingα_(1A)(ADRA1A),α_(2A)(ADRA2A),andα_(2B)(ADRA2B).Further animal experiment results showed that Phe significantly promoted gastrointestinal motility.Phe may relieve STC by enhancing the release of substance P(SP)and upregulating the m RNA expression of TACR1 in the ileum.Importantly,Phe may also promote intestinal movement by downregulating the m RNA expression of ADRA2A and ADRA2B and upregulating the m RNA expression of Calm and the m RNA and protein expression of myosin light chain 9 in the ileum,thereby activating the G protein-coupled receptor-myosin light chain signaling pathway.These results lay a foundation for the application of M.oleifera and Phe in constipation.展开更多
To support ubiquitous communication and enhance other 6G applications,the Space-Air-Ground Integrated Network(SAGIN)has become a research hotspot.Traditionally,satellite-ground fusion technologies integrate network en...To support ubiquitous communication and enhance other 6G applications,the Space-Air-Ground Integrated Network(SAGIN)has become a research hotspot.Traditionally,satellite-ground fusion technologies integrate network entities from space,aerial,and terrestrial domains.However,they face challenges such as spectrum scarcity and inefficient satellite handover.This paper explores the Channel-Aware Handover Management(CAHM)strategy in SAGIN for data allocation.Specifically,CAHM utilizes the data receiving capability of Low Earth Orbit(LEO)satellites,considering satellite-ground distance,free-space path loss,and channel gain.Furthermore,CAHM assesses LEO satellite data forwarding capability using signal-to-noise ratio,link duration and buffer queue length.Then,CAHM applies historical data on LEO satellite transmission successes and failures to effectively reduce overall interruption ratio.Simulation results show that CAHM outperforms baseline algorithms in terms of delivery ratio,latency,and interruption ratio.展开更多
As the first stage of the quantum Internet,quantum key distribution(QKD)networks hold the promise of providing long-term security for diverse users.Most existing QKD networks have been constructed based on independent...As the first stage of the quantum Internet,quantum key distribution(QKD)networks hold the promise of providing long-term security for diverse users.Most existing QKD networks have been constructed based on independent QKD protocols,and they commonly rely on the deployment of single-protocol trusted relay chains for long reach.Driven by the evolution of QKD protocols,large-scale QKD networking is expected to migrate from a single-protocol to a multi-protocol paradigm,during which some useful evolutionary elements for the later stages of the quantum Internet may be incorporated.In this work,we delve into a pivotal technique for large-scale QKD networking,namely,multi-protocol relay chaining.A multi-protocol relay chain is established by connecting a set of trusted/untrusted relays relying on multiple QKD protocols between a pair of QKD nodes.The structures of diverse multi-protocol relay chains are described,based on which the associated model is formulated and the policies are defined for the deployment of multi-protocol relay chains.Furthermore,we propose three multi-protocol relay chaining heuristics.Numerical simulations indicate that the designed heuristics can effectively reduce the number of trusted relays deployed and enhance the average security level versus the commonly used single-protocol trusted relay chaining methods on backbone network topologies.展开更多
Livestock transportation is a key factor that contributes to the spatial spread of brucellosis.To analyze the impact of sheep transportation on brucellosis transmission,we develop a human–sheep coupled brucellosis mo...Livestock transportation is a key factor that contributes to the spatial spread of brucellosis.To analyze the impact of sheep transportation on brucellosis transmission,we develop a human–sheep coupled brucellosis model within a metapopulation network framework.Theoretically,we examine the positively invariant set,the basic reproduction number,the existence,uniqueness,and stability of disease-free equilibrium and the existence of the endemic equilibrium of the model.For practical application,using Heilongjiang province as a case study,we simulate brucellosis transmission across 12 cities based on data using three network types:the BA network,the ER network,and homogeneous mixing network.The simulation results indicate that the network's average degree plays a role in the spread of brucellosis.For BA and ER networks,the basic reproduction number and cumulative incidence of brucellosis stabilize when the network's average degree reaches 4 or 5.In contrast,sheep transport in a homogeneous mixing network accelerates the cross-regional spread of brucellosis,whereas transportation in a BA network helps to control it effectively.Furthermore,the findings suggest that the movement of sheep is not always detrimental to controlling the spread of brucellosis.For cities with smaller sheep populations,such as Shuangyashan and Qitaihe,increasing the transport of sheep outward amplifies the spatial spread of the disease.In contrast,in cities with larger sheep populations,such as Qiqihar,Daqing,and Suihua,moderate sheep outflow can help reduce the spread.In addition,cities with large livestock populations play a dominant role in the overall transmission dynamics,underscoring the need for stricter supervision in these areas.展开更多
The unique structure of signed networks,characterized by positive and negative edges,poses significant challenges for analyzing network topology.In recent years,various statistical algorithms have been developed to ad...The unique structure of signed networks,characterized by positive and negative edges,poses significant challenges for analyzing network topology.In recent years,various statistical algorithms have been developed to address this issue.However,there remains a lack of a unified framework to uncover the nontrivial properties inherent in signed network structures.To support developers,researchers,and practitioners in this field,we introduce a Python library named SNSAlib(Signed Network Structure Analysis),specifically designed to meet these analytical requirements.This library encompasses empirical signed network datasets,signed null model algorithms,signed statistics algorithms,and evaluation indicators.The primary objective of SNSAlib is to facilitate the systematic analysis of micro-and meso-structure features within signed networks,including node popularity,clustering,assortativity,embeddedness,and community structure by employing more accurate signed null models.Ultimately,it provides a robust paradigm for structure analysis of signed networks that enhances our understanding and application of signed networks.展开更多
Photonic computing has emerged as a promising technology for the ever-increasing computational demands of machine learning and artificial intelligence.Due to the advantages in computing speed,integrated photonic chips...Photonic computing has emerged as a promising technology for the ever-increasing computational demands of machine learning and artificial intelligence.Due to the advantages in computing speed,integrated photonic chips have attracted wide research attention on performing convolutional neural network algorithm.Programmable photonic chips are vital for achieving practical applications of photonic computing.Herein,a programmable photonic chip based on ultrafast laser-induced phase change is fabricated for photonic computing.Through designing the ultrafast laser pulses,the Sb film integrated into photonic waveguides can be reversibly switched between crystalline and amorphous phase,resulting in a large contrast in refractive index and extinction coefficient.As a consequence,the light transmission of waveguides can be switched between write and erase states.To determine the phase change time,the transient laser-induced phase change dynamics of Sb film are revealed at atomic scale,and the time-resolved transient reflectivity is measured.Based on the integrated photonic chip,photonic convolutional neural networks are built to implement machine learning algorithm,and images recognition task is achieved.This work paves a route for fabricating programmable photonic chips by designed ultrafast laser,which will facilitate the application of photonic computing in artificial intelligence.展开更多
The integration of artificial intelligence(AI)with satellite technology is ushering in a new era of space exploration,with small satellites playing a pivotal role in advancing this field.However,the deployment of mach...The integration of artificial intelligence(AI)with satellite technology is ushering in a new era of space exploration,with small satellites playing a pivotal role in advancing this field.However,the deployment of machine learning(ML)models in space faces distinct challenges,such as single event upsets(SEUs),which are triggered by space radiation and can corrupt the outputs of neural networks.To defend against this threat,we investigate laser-based fault injection techniques on 55-nm SRAM cells,aiming to explore the impact of SEUs on neural network performance.In this paper,we propose a novel solution in the form of Bin-DNCNN,a binary neural network(BNN)-based model that significantly enhances robustness to radiation-induced faults.We conduct experiments to evaluate the denoising effectiveness of different neural network architectures,comparing their resilience to weight errors before and after fault injections.Our experimental results demonstrate that binary neural networks(BNNs)exhibit superior robustness to weight errors compared to traditional deep neural networks(DNNs),making them a promising candidate for spaceborne AI applications.展开更多
The United States Food and Drug Administration's(FDA's)August 2024 determination that an additional phase Ⅱ study will be required to consider the approval of midomafetamine for the treatment of posttraumatic...The United States Food and Drug Administration's(FDA's)August 2024 determination that an additional phase Ⅱ study will be required to consider the approval of midomafetamine for the treatment of posttraumatic stress disorder(PTSD)could delay the potential approval of this promising treatment by several years.展开更多
Physics informed neural networks(PINNs)are a deep learning approach designed to solve partial differential equations(PDEs).Accurately learning the initial conditions is crucial when employing PINNs to solve PDEs.Howev...Physics informed neural networks(PINNs)are a deep learning approach designed to solve partial differential equations(PDEs).Accurately learning the initial conditions is crucial when employing PINNs to solve PDEs.However,simply adjusting weights and imposing hard constraints may not always lead to better learning of the initial conditions;sometimes it even makes it difficult for the neural networks to converge.To enhance the accuracy of PINNs in learning the initial conditions,this paper proposes a novel strategy named causally enhanced initial conditions(CEICs).This strategy works by embedding a new loss in the loss function:the loss is constructed by the derivative of the initial condition and the derivative of the neural network at the initial condition.Furthermore,to respect the causality in learning the derivative,a novel causality coefficient is introduced for the training when selecting multiple derivatives.Additionally,because CEICs can provide more accurate pseudo-labels in the first subdomain,they are compatible with the temporal-marching strategy.Experimental results demonstrate that CEICs outperform hard constraints and improve the overall accuracy of pre-training PINNs.For the 1D-Korteweg–de Vries,reaction and convection equations,the CEIC method proposed in this paper reduces the relative error by at least 60%compared to the previous methods.展开更多
The rapid development of mega low earth orbit(LEO)satellite networks is expected to have a significant impact on 6G networks.Unlike terrestrial networks,due to the high-speed movement of satellites,users will frequent...The rapid development of mega low earth orbit(LEO)satellite networks is expected to have a significant impact on 6G networks.Unlike terrestrial networks,due to the high-speed movement of satellites,users will frequently hand over between satellites even if their positions remain unchanged.Furthermore,the extensive coverage characteristic of satellites leads to massive users executing handovers simultaneously.To address these challenges,we propose a novel double grouping-based group handover scheme(DGGH)specifically tailored for mega LEO satellite networks.First,we develop a user grouping strategy based on beam-limited hierarchical clustering to divide users into distinct groups.Next,we reframe the challenge of managing multiple users’simultaneous handovers as a single-objective optimization problem,solving it with a satellite grouping strategy that leverages the accuracy of greedy algorithms and the simplicity of dynamic programming.Additionally,we develop a group handover algorithm based on minimal handover waiting time to improve the satellite grouping process further.The detailed steps of the DGGH scheme’s handover procedure are meticulously outlined.Comprehensive simulations show that the proposed DGGH scheme outperforms single-user handover schemes in terms of handover signaling over-head and handover success rate.展开更多
The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spect...The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spectrometer(ANIS)at the China Spallation Neutron Source(CSNS).The Yolov3 and MNIST models were implemented on the XILINX28-nm system-on-chip(So C).Meanwhile,the Yolov3 and ResNet50 models were deployed on the XILINX 16-nm Fin FET Ultra Scale+MPSoC.The atmospheric neutron SEEs on the tested CNN systems were comprehensively evaluated from six aspects,including chip type,network architecture,deployment methods,inference time,datasets,and the position of the anchor boxes.The various types of SEE soft errors,SEE cross-sections,and their distribution were analyzed to explore the radiation sensitivities and rules of 28-nm and 16-nm SoC.The current research can provide the technology support of radiation-resistant design of CNN system for developing and applying high-reliability,long-lifespan domestic artificial intelligence chips.展开更多
文摘Owing to the ubiquity of wireless networks and the popularity of WiFi infrastructures,received signal strength(RSS)-based indoor localization systems have received much attention.The placement of access points(APs)significantly influences localization accuracy and network access.However,the indoor scenario and network access are not fully considered in previous AP placement optimization methods.This study proposes a practical scenario modelingaided AP placement optimization method for improving localization accuracy and network access.In order to reduce the gap between simulation-based and field measurement-based AP placement optimization methods,we introduce an indoor scenario modeling and Gaussian process-based RSS prediction method.After that,the localization and network access metrics are implemented in the multiple objective particle swarm optimization(MOPSO)solution,Pareto front criterion and virtual repulsion force are applied to determine the optimal AP placement.Finally,field experiments demonstrate the effectiveness of the proposed indoor scenario modeling method and RSS prediction model.A thorough comparison confirms the localization and network access improvement attributed to the proposed anchor placement method.
基金Fundação de AmparoàPesquisa do Estado da Bahia(FAPESB),Coordenação de Aperfeiçoamento de Pessoal de Nível Superior(CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)organizations for supporting the Graduate Program in Computer Science at the Federal University of Bahia.
文摘Intensely using online social networks(OSNs)makes users concerned about privacy of data.Given the centralized nature of these platforms,and since each platform has a particular storage mechanism,authentication,and access control,their users do not have the control and the right over their data.Therefore,users cannot easily switch between similar platforms or transfer data from one platform to another.These issues imply,among other things,a threat to privacy since such users depend on the interests of the service provider responsible for administering OSNs.As a strategy for the decentralization of the OSNs and,consequently,as a solution to the privacy problems in these environments,the so-called decentralized online social networks(DOSNs)have emerged.Unlike OSNs,DOSNs are decentralized content management platforms because they do not use centralized service providers.Although DOSNs address some of the privacy issues encountered in OSNs,DOSNs also pose significant challenges to consider,for example,access control to user profile information with high granularity.This work proposes developing an ontological model and a service to support privacy in DOSNs.The model describes the main concepts of privacy access control in DOSNs and their relationships.In addition,the service will consume the model to apply access control according to the policies represented in the model.Our model was evaluated in two phases to verify its compliance with the proposed domain.Finally,we evaluated our service with a performance evaluation,and the results were satisfactory concerning the response time of access control requests.
基金supported in part by the National Key R&D Program of China under Grant 2020YFB1806104in part by Innovation and Entrepreneurship of Jiangsu Province High-level Talent Program+1 种基金in part by Natural Sciences and Engineering Research Council of Canada (NSERC)the support from Huawei
文摘With the deployment of ultra-dense low earth orbit(LEO)satellite constellations,LEO satellite access network(LEO-SAN)is envisioned to achieve global Internet coverage.Meanwhile,the civil aviation communications have increased dramatically,especially for providing airborne Internet services.However,due to dynamic service demands and onboard LEO resources over time and space,it poses huge challenges in satellite-aircraft access and service management in ultra-dense LEO satellite networks(UDLSN).In this paper,we propose a deep reinforcement learning-based approach for ultra-dense LEO satellite-aircraft access and service management.Firstly,we develop an airborne Internet architecture based on UDLSN and design a management mechanism including medium earth orbit satellites to guarantee lightweight management.Secondly,considering latency-sensitive and latency-tolerant services,we formulate the problem of satellite-aircraft access and service management for civil aviation to ensure service continuity.Finally,we propose a proximal policy optimization-based access and service management algorithm to solve the formulated problem.Simulation results demonstrate the convergence and effectiveness of the proposed algorithm with satisfying the service continuity when applying to the UDLSN.
基金supported by the National Natural Science Foundation of China (No. 62027801)。
文摘In today's world where everything is interconnected, air-space-ground integrated networks have become a current research hotspot due to their characteristics of high, long and wide area coverage. Given the constantly changing and dynamic characteristics of air and space networks, along with the sheer number and complexity of access nodes involved, the process of rapid networking presents substantial challenges. In order to achieve rapid and dynamic networking of air-space-ground integrated networks, this paper focuses on the study of methods for large-scale nodes to randomly access satellites. This paper utilizes a cross-layer design methodology to enhance the access success probability by jointly optimizing the physical layer and medium access control(MAC) layer aspects. Load statistics priority random access(LSPRA) technology is proposed.Experiments show that when the number of nodes is greater than 1 000, this method can also ensure stable access performance, providing ideas for the design of air-space-ground integrated network access systems.
基金supported by NSF China(No.61960206002,62020106005,42050105,62061146002)Shanghai Pilot Program for Basic Research–Shanghai Jiao Tong University.
文摘Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understanding of friendship paradox is very limited.Only few works provide theoretical evidence of single-step and multi-step friendship paradoxes,given that the neighbors of interest are onehop and multi-hop away from the target node.However,they consider non-evolving networks,as opposed to the topology of real social networks that are constantly growing over time.We are thus motivated to present a first look into friendship paradox in evolving networks,where newly added nodes preferentially attach themselves to those with higher degrees.Our analytical verification of both single-step and multistep friendship paradoxes in evolving networks,along with comparison to the non-evolving counterparts,discloses that“friendship paradox is even more paradoxical in evolving networks”,primarily from three aspects:1)we demonstrate a strengthened effect of single-step friendship paradox in evolving networks,with a larger probability(more than 0.8)of a random node’s neighbors having higher average degree than the random node itself;2)we unravel higher effectiveness of multi-step friendship paradox in seeking for influential nodes in evolving networks,as the rate of reaching the max degree node can be improved by a factor of at least Θ(t^(2/3))with t being the network size;3)we empirically verify our findings through both synthetic and real datasets,which suggest high agreements of results and consolidate the reasonability of evolving model for real social networks.
基金partially supported by the National Natural Science Foundation of China(62161016)the Key Research and Development Project of Lanzhou Jiaotong University(ZDYF2304)+1 种基金the Beijing Engineering Research Center of Highvelocity Railway Broadband Mobile Communications(BHRC-2022-1)Beijing Jiaotong University。
文摘In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clustering routing base on firefly and pigeon-inspired algorithm(FF-PIA)is proposed to optimise the data transmission path.After having obtained the optimal number of cluster head node(CH),its result might be taken as the basis of producing the initial population of FF-PIA algorithm.The L′evy flight mechanism and adaptive inertia weighting are employed in the algorithm iteration to balance the contradiction between the global search and the local search.Moreover,a Gaussian perturbation strategy is applied to update the optimal solution,ensuring the algorithm can jump out of the local optimal solution.And,in the WSN data gathering,a onedimensional signal reconstruction algorithm model is developed by dilated convolution and residual neural networks(DCRNN).We conducted experiments on the National Oceanic and Atmospheric Administration(NOAA)dataset.It shows that the DCRNN modeldriven data reconstruction algorithm improves the reconstruction accuracy as well as the reconstruction time performance.FF-PIA and DCRNN clustering routing co-simulation reveals that the proposed algorithm can effectively improve the performance in extending the network lifetime and reducing data transmission delay.
文摘Maximize the resource utilization efficiency and guarantee the quality of service(QoS)of users by selecting the network are the key issues for heterogeneous network operators,but the resources occupied by users in different networks cannot be compared directly.This paper proposes a network selection algorithm for heterogeneous network.Firstly,the concept of equivalent bandwidth is proposed,through which the actual resources occupied by users with certain QoS requirements in different networks can be compared directly.Then the concept of network applicability is defined to express the abilities of networks to support different services.The proposed network selection algorithm first evaluates whether the network has enough equivalent bandwidth required by the user and then prioritizes network with poor applicability to avoid the situation that there are still residual resources in entire network,but advanced services can not be admitted.The simulation results show that the proposed algorithm obtained better performance than the baselines in terms of reducing call blocking probability and improving network resource utilization efficiency.
文摘Purpose:For a set of 1,561 Open Access(OA)and non-OA journals in business and economics,this study evaluates the relationships between four citation metrics-five-year Impact Factor(5IF),CiteScore,Article Influence(AI)score,and SCImago Journal Rank(SJR)-and the journal ratings assigned by expert reviewers.We expect that the OA journals will have especially high citation impact relative to their perceived quality(reputation).Design/methodology/approach:Regression is used to estimate the ratings assigned by expert reviewers for the 2021 CABS(Chartered Association of Business Schools)journal assessment exercise.The independent variables are the four citation metrics,evaluated separately,and a dummy variable representing the OA/non-OA status of each journal.Findings:Regardless of the citation metric used,OA journals in business and economics have especially high citation impact relative to their perceived quality(reputation).That is,they have especially low perceived quality(reputation)relative to their citation impact.Research limitations:These results are specific to the CABS journal ratings and the four citation metrics.However,there is strong evidence that CABS is closely related to several other expert ratings,and that 5IF,CiteScore,AI,and SJR are representative of the other citation metrics that might have been chosen.Practical implications:There are at least two possible explanations for these results:(1)expert evaluators are biased against OA journals,and(2)OA journals have especially high citation impact due to their increased accessibility.Although this study does not allow us to determine which of these explanations are supported,the results suggest that authors should consider publishing in OA journals whenever overall readership and citation impact are more important than journal reputation within a particular field.Moreover,the OA coefficients provide a useful indicator of the extent to which anti-OA bias(or the citation advantage of OA journals)is diminishing over time.Originality/value:This is apparently the first study to investigate the impact of OA status on the relationships between expert journal ratings and journal citation metrics.
文摘With the coming of digital era,profound changes are happening in communication field.Within these,non-terrestrial network(NTN)is considered as a leading-edge technology.NTN not only represents an innovation,but also signifies the main development trend of future global communication.As a layered heterogeneous network,NTN will integrate multiple communication platforms,including satellites,high altitude platform systems(HAPS),and unmanned aerial systems(UAS),these provide flexible and composable solutions for achieving ubiquitous global communication coverage.
文摘Moringa oleifera have laxative effects,but their active compositions and mechanisms are not very clear thus far.To this end,we systematically explored the active components and mechanism of M.oleifera leaves in relieving constipation by using the slow transit constipation(STC)mouse model and network pharmacology.The results of animal experiments showed that M.oleifera aqueous extract(MOA)had good laxative activity,and its 70%alcohol soluble part(ASP)also showed significant laxative activity(P<0.01).Network pharmacological prediction results suggested that L-phenylalanine(Phe)was the key compound of ASP,and it might relieve constipation through tachykinin receptor 1(TACR1)and three kinds of adrenergic receptors,includingα_(1A)(ADRA1A),α_(2A)(ADRA2A),andα_(2B)(ADRA2B).Further animal experiment results showed that Phe significantly promoted gastrointestinal motility.Phe may relieve STC by enhancing the release of substance P(SP)and upregulating the m RNA expression of TACR1 in the ileum.Importantly,Phe may also promote intestinal movement by downregulating the m RNA expression of ADRA2A and ADRA2B and upregulating the m RNA expression of Calm and the m RNA and protein expression of myosin light chain 9 in the ileum,thereby activating the G protein-coupled receptor-myosin light chain signaling pathway.These results lay a foundation for the application of M.oleifera and Phe in constipation.
基金National Key Research and Development Program of China(2022YFE0139300)Hubei Province Key Research and Development Program(2024BAB051)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2022B1515120067)Wuhan Key Research and Development Program(2024050702030136).
文摘To support ubiquitous communication and enhance other 6G applications,the Space-Air-Ground Integrated Network(SAGIN)has become a research hotspot.Traditionally,satellite-ground fusion technologies integrate network entities from space,aerial,and terrestrial domains.However,they face challenges such as spectrum scarcity and inefficient satellite handover.This paper explores the Channel-Aware Handover Management(CAHM)strategy in SAGIN for data allocation.Specifically,CAHM utilizes the data receiving capability of Low Earth Orbit(LEO)satellites,considering satellite-ground distance,free-space path loss,and channel gain.Furthermore,CAHM assesses LEO satellite data forwarding capability using signal-to-noise ratio,link duration and buffer queue length.Then,CAHM applies historical data on LEO satellite transmission successes and failures to effectively reduce overall interruption ratio.Simulation results show that CAHM outperforms baseline algorithms in terms of delivery ratio,latency,and interruption ratio.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.62201276,62350001,U22B2026,and 62471248)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0300701)+1 种基金the Key R&D Program(Industry Foresight and Key Core Technologies)of Jiangsu Province(Grant No.BE2022071)Natural Science Research of Jiangsu Higher Education Institutions of China(Grant No.22KJB510007)。
文摘As the first stage of the quantum Internet,quantum key distribution(QKD)networks hold the promise of providing long-term security for diverse users.Most existing QKD networks have been constructed based on independent QKD protocols,and they commonly rely on the deployment of single-protocol trusted relay chains for long reach.Driven by the evolution of QKD protocols,large-scale QKD networking is expected to migrate from a single-protocol to a multi-protocol paradigm,during which some useful evolutionary elements for the later stages of the quantum Internet may be incorporated.In this work,we delve into a pivotal technique for large-scale QKD networking,namely,multi-protocol relay chaining.A multi-protocol relay chain is established by connecting a set of trusted/untrusted relays relying on multiple QKD protocols between a pair of QKD nodes.The structures of diverse multi-protocol relay chains are described,based on which the associated model is formulated and the policies are defined for the deployment of multi-protocol relay chains.Furthermore,we propose three multi-protocol relay chaining heuristics.Numerical simulations indicate that the designed heuristics can effectively reduce the number of trusted relays deployed and enhance the average security level versus the commonly used single-protocol trusted relay chaining methods on backbone network topologies.
基金Project supported by the National Natural Science Foundation of China(Grant No.12101443,12371493)the Natural Science Foundation of Shanxi Province(Grant Nos.20210302124260 and 202303021221024)。
文摘Livestock transportation is a key factor that contributes to the spatial spread of brucellosis.To analyze the impact of sheep transportation on brucellosis transmission,we develop a human–sheep coupled brucellosis model within a metapopulation network framework.Theoretically,we examine the positively invariant set,the basic reproduction number,the existence,uniqueness,and stability of disease-free equilibrium and the existence of the endemic equilibrium of the model.For practical application,using Heilongjiang province as a case study,we simulate brucellosis transmission across 12 cities based on data using three network types:the BA network,the ER network,and homogeneous mixing network.The simulation results indicate that the network's average degree plays a role in the spread of brucellosis.For BA and ER networks,the basic reproduction number and cumulative incidence of brucellosis stabilize when the network's average degree reaches 4 or 5.In contrast,sheep transport in a homogeneous mixing network accelerates the cross-regional spread of brucellosis,whereas transportation in a BA network helps to control it effectively.Furthermore,the findings suggest that the movement of sheep is not always detrimental to controlling the spread of brucellosis.For cities with smaller sheep populations,such as Shuangyashan and Qitaihe,increasing the transport of sheep outward amplifies the spatial spread of the disease.In contrast,in cities with larger sheep populations,such as Qiqihar,Daqing,and Suihua,moderate sheep outflow can help reduce the spread.In addition,cities with large livestock populations play a dominant role in the overall transmission dynamics,underscoring the need for stricter supervision in these areas.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.72371031,62173065,62476045)Fundamental Research Funds for the Central Universities(Grant No.124330008)。
文摘The unique structure of signed networks,characterized by positive and negative edges,poses significant challenges for analyzing network topology.In recent years,various statistical algorithms have been developed to address this issue.However,there remains a lack of a unified framework to uncover the nontrivial properties inherent in signed network structures.To support developers,researchers,and practitioners in this field,we introduce a Python library named SNSAlib(Signed Network Structure Analysis),specifically designed to meet these analytical requirements.This library encompasses empirical signed network datasets,signed null model algorithms,signed statistics algorithms,and evaluation indicators.The primary objective of SNSAlib is to facilitate the systematic analysis of micro-and meso-structure features within signed networks,including node popularity,clustering,assortativity,embeddedness,and community structure by employing more accurate signed null models.Ultimately,it provides a robust paradigm for structure analysis of signed networks that enhances our understanding and application of signed networks.
基金supported by the National Key R&D Program of China(2024YFB4609801)the National Natural Science Foundation of China(52075289)the Tsinghua-Jiangyin Innovation Special Fund(TJISF,2023JYTH0104).
文摘Photonic computing has emerged as a promising technology for the ever-increasing computational demands of machine learning and artificial intelligence.Due to the advantages in computing speed,integrated photonic chips have attracted wide research attention on performing convolutional neural network algorithm.Programmable photonic chips are vital for achieving practical applications of photonic computing.Herein,a programmable photonic chip based on ultrafast laser-induced phase change is fabricated for photonic computing.Through designing the ultrafast laser pulses,the Sb film integrated into photonic waveguides can be reversibly switched between crystalline and amorphous phase,resulting in a large contrast in refractive index and extinction coefficient.As a consequence,the light transmission of waveguides can be switched between write and erase states.To determine the phase change time,the transient laser-induced phase change dynamics of Sb film are revealed at atomic scale,and the time-resolved transient reflectivity is measured.Based on the integrated photonic chip,photonic convolutional neural networks are built to implement machine learning algorithm,and images recognition task is achieved.This work paves a route for fabricating programmable photonic chips by designed ultrafast laser,which will facilitate the application of photonic computing in artificial intelligence.
文摘The integration of artificial intelligence(AI)with satellite technology is ushering in a new era of space exploration,with small satellites playing a pivotal role in advancing this field.However,the deployment of machine learning(ML)models in space faces distinct challenges,such as single event upsets(SEUs),which are triggered by space radiation and can corrupt the outputs of neural networks.To defend against this threat,we investigate laser-based fault injection techniques on 55-nm SRAM cells,aiming to explore the impact of SEUs on neural network performance.In this paper,we propose a novel solution in the form of Bin-DNCNN,a binary neural network(BNN)-based model that significantly enhances robustness to radiation-induced faults.We conduct experiments to evaluate the denoising effectiveness of different neural network architectures,comparing their resilience to weight errors before and after fault injections.Our experimental results demonstrate that binary neural networks(BNNs)exhibit superior robustness to weight errors compared to traditional deep neural networks(DNNs),making them a promising candidate for spaceborne AI applications.
文摘The United States Food and Drug Administration's(FDA's)August 2024 determination that an additional phase Ⅱ study will be required to consider the approval of midomafetamine for the treatment of posttraumatic stress disorder(PTSD)could delay the potential approval of this promising treatment by several years.
基金supported by the National Natural Science Foundation of China(Grant Nos.1217211 and 12372244).
文摘Physics informed neural networks(PINNs)are a deep learning approach designed to solve partial differential equations(PDEs).Accurately learning the initial conditions is crucial when employing PINNs to solve PDEs.However,simply adjusting weights and imposing hard constraints may not always lead to better learning of the initial conditions;sometimes it even makes it difficult for the neural networks to converge.To enhance the accuracy of PINNs in learning the initial conditions,this paper proposes a novel strategy named causally enhanced initial conditions(CEICs).This strategy works by embedding a new loss in the loss function:the loss is constructed by the derivative of the initial condition and the derivative of the neural network at the initial condition.Furthermore,to respect the causality in learning the derivative,a novel causality coefficient is introduced for the training when selecting multiple derivatives.Additionally,because CEICs can provide more accurate pseudo-labels in the first subdomain,they are compatible with the temporal-marching strategy.Experimental results demonstrate that CEICs outperform hard constraints and improve the overall accuracy of pre-training PINNs.For the 1D-Korteweg–de Vries,reaction and convection equations,the CEIC method proposed in this paper reduces the relative error by at least 60%compared to the previous methods.
基金supported in part by the State Key Laboratory of Micro-Spacecraft Rapid Design and Intelligent Cluster(No.MS01240103)the National Natural Science Foundation of China(No.62071146,No.62431009)+1 种基金the National 2011 Collaborative Innovation Center of Wireless Communication Technologies(No.2242022k60006)the Research Project Fund of Songjiang Laboratory(No.SL20230104).
文摘The rapid development of mega low earth orbit(LEO)satellite networks is expected to have a significant impact on 6G networks.Unlike terrestrial networks,due to the high-speed movement of satellites,users will frequently hand over between satellites even if their positions remain unchanged.Furthermore,the extensive coverage characteristic of satellites leads to massive users executing handovers simultaneously.To address these challenges,we propose a novel double grouping-based group handover scheme(DGGH)specifically tailored for mega LEO satellite networks.First,we develop a user grouping strategy based on beam-limited hierarchical clustering to divide users into distinct groups.Next,we reframe the challenge of managing multiple users’simultaneous handovers as a single-objective optimization problem,solving it with a satellite grouping strategy that leverages the accuracy of greedy algorithms and the simplicity of dynamic programming.Additionally,we develop a group handover algorithm based on minimal handover waiting time to improve the satellite grouping process further.The detailed steps of the DGGH scheme’s handover procedure are meticulously outlined.Comprehensive simulations show that the proposed DGGH scheme outperforms single-user handover schemes in terms of handover signaling over-head and handover success rate.
基金Project supported by the National Natural Science Foundation of China(Grant No.12305303)the Natural Science Foundation of Hunan Province of China(Grant Nos.2023JJ40520,2024JJ2044,and 2021JJ40444)+3 种基金the Science and Technology Innovation Program of Hunan Province,China(Grant No.2020RC3054)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(Grant No.CX20240831)the Natural Science Basic Research Plan in the Shaanxi Province of China(Grant No.2023-JC-QN0015)the Doctoral Research Fund of University of South China(Grant No.200XQD033)。
文摘The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spectrometer(ANIS)at the China Spallation Neutron Source(CSNS).The Yolov3 and MNIST models were implemented on the XILINX28-nm system-on-chip(So C).Meanwhile,the Yolov3 and ResNet50 models were deployed on the XILINX 16-nm Fin FET Ultra Scale+MPSoC.The atmospheric neutron SEEs on the tested CNN systems were comprehensively evaluated from six aspects,including chip type,network architecture,deployment methods,inference time,datasets,and the position of the anchor boxes.The various types of SEE soft errors,SEE cross-sections,and their distribution were analyzed to explore the radiation sensitivities and rules of 28-nm and 16-nm SoC.The current research can provide the technology support of radiation-resistant design of CNN system for developing and applying high-reliability,long-lifespan domestic artificial intelligence chips.