Electron impact ionization mass spectra of six new synthetic bis-piperazinium salts (M2+ 2Br-2HC1) with anti-tumor activities were obtained. Although the M+ ions and double charge ions M2+ were notobserved in E1 mass ...Electron impact ionization mass spectra of six new synthetic bis-piperazinium salts (M2+ 2Br-2HC1) with anti-tumor activities were obtained. Although the M+ ions and double charge ions M2+ were notobserved in E1 mass spectra, some strange ions such as [M-2]+ ions,[M-R]+ ions , [M-R-l]+ ions, [M-2R]+ ions and even [RX]+ ions presented in EIMS by decreasing the electron energy. These phenomena may be explained as R+ rearrangement and intermolecular reaction occurring in the condensed phase. We tried to describe the main routes of fragmentation and high sensitive mass spectra of the fragments oaboutthese compounds.展开更多
In this paper, author investigated the effect of the Coulomb potential of the core of atomic helium on the rescattering processes. Through the calculation author concluded that the Coulomb potential effect may not pla...In this paper, author investigated the effect of the Coulomb potential of the core of atomic helium on the rescattering processes. Through the calculation author concluded that the Coulomb potential effect may not play an important role in causing the discrepancy between the experimental data and theoretical results of Kuchievs model, and the NS ionization is dependent on the frequency of the laser field. Furthermore, it is concluded that the strength of the laser field and the charge number of the core affect the frequency regime corresponding to the peak value of the NS ionization rate.展开更多
This work is devoted to experimentally study the characteristics of discharge plasma in high power xenon flashlamps.In the experiments,plasma channel profiles are captured by using a high speed CCD camera,and the radi...This work is devoted to experimentally study the characteristics of discharge plasma in high power xenon flashlamps.In the experiments,plasma channel profiles are captured by using a high speed CCD camera,and the radiation energy of the flashlamp is obtained by a pyroelectric energy meter.Voltage and current curves are recorded to shed light on the plasma characteristics.With these diagnostic methods,typical factors influencing the evolution process of plasma channel are studied,including the external electric field and the pre-ionization.The electric potential distribution in the flashlamp influence the plasma channel characteristics the most significantly.The plasma channel pattern for the cases with grounded wires is different from that with ungrounded metal wires.When the wire is ungrounded,it is the coupling voltage between the metal wire and the flashlamp that influences the development of plasma channel.In terms of radiation efficiency,it is proven that there is an optimal interval within 200~300μs between the pre-ionization pulse and the main pulse.展开更多
Resonant ionization spectroscopy (RIS) and resonant ionization mass spectroscopy (RIMS) are employed to detect the photodissociation product of sodium iodide molecules in a molecular beam in an intense laser field in ...Resonant ionization spectroscopy (RIS) and resonant ionization mass spectroscopy (RIMS) are employed to detect the photodissociation product of sodium iodide molecules in a molecular beam in an intense laser field in the absence of the buffer gases. Time of flight mass spectra is recorded. In particular, the appearances of multiphoton ionization are discussed.展开更多
The dependence of the ratio R1 for transfer ionization to single capture for Cq+, Nq+, Oq+, Neq+ ions on Ne target upon the electronic structure of the projectile is studied. For Aq+-Ne collisions the ratio R1 decreas...The dependence of the ratio R1 for transfer ionization to single capture for Cq+, Nq+, Oq+, Neq+ ions on Ne target upon the electronic structure of the projectile is studied. For Aq+-Ne collisions the ratio R1 decreases as the atomic number Z of the projectile increases for q=4,5,6,7 sequences which provides strong evidence for the increase of the binding energy of the target valence electron after single electron capture. The increase in binding energy depends both upon the atomic number of the projectile and the target atom.展开更多
In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduce...In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduced electron transfer(PET)effect.Two perylene diimide isomers PDI-P and PDI-B were designed and synthesized,and their molecular structures were characterized by high-resolution Fourier transform mass spectrometry(HRMS),nuclear magnetic resonance hydrogen and carbon spectroscopy(~1H and~(13)C NMR).The interaction between ionizing radiation and fluorescent molecules was simulated by HCl titration.The results show that combining PDIs and HCl can improve fluorescence through the retro-PET process.Despite the similarities in chemical structures,the fluorescent enhancement multiple of PDI-B with aromatic amine as electron donor is much higher than that of PDI-P with alkyl amine.In the direct irradiation experiments of ionizing radiation,the emission enhancement multiples of PDI-P and PDI-B are 2.01 and 45.4,respectively.Furthermore,density functional theory(DFT)and time-dependent density functional theory(TDDFT)calculations indicate that the HOMO and HOMO-1 energy ranges of PDI-P and PDI-B are 0.54 e V and 1.13 e V,respectively.A wider energy range has a stronger driving force on electrons,which is conducive to fluorescence quenching.Both femtosecond transient absorption spectroscopy(fs-TAS)and transient fluorescence spectroscopy(TFS)tests show that PDI-B has shorter charge separation lifetime and higher electron transfer rate constant.Although both isomers can significantly reduce LOD during PET process,PDI-B with aromatic amine has a wider detection range of 0.118—240 Gy due to its larger emission enhancement,which is a leap of three orders of magnitude.It breaks through the detection range of gamma radiation reported in existing studies,and provides theoretical support for the further study of sensitive and effective new materials for ionizing radiation detection.展开更多
An Nd: YAG pulsed laser (145 mJ) was used to ablate aluminum target and Ar was used as protecting gas. Time-and space-resolved spectra of the plasmas under pressure 100 Pa, 1 kPa, 10 kPa and 100 kPa were acquired with...An Nd: YAG pulsed laser (145 mJ) was used to ablate aluminum target and Ar was used as protecting gas. Time-and space-resolved spectra of the plasmas under pressure 100 Pa, 1 kPa, 10 kPa and 100 kPa were acquired with time- and space-resolved technique. The characteristics of the plasma radiating under each pressure were briefly described, and the laws of Ar characteristical radiaton were analyzed in detail. Based on the profile of Ar characteristical radiation under these pressure, the relation between protecting gas pressure and its ionization was briefly discussed, and explained with quantum theory. Farther more, the mechanism of ambient gas ionization was investigated. As the result, it was suggested that the main mechanism inducing protecting gas to ionize should be the absorption of the plasma continuum radiation by the gas.展开更多
文摘Electron impact ionization mass spectra of six new synthetic bis-piperazinium salts (M2+ 2Br-2HC1) with anti-tumor activities were obtained. Although the M+ ions and double charge ions M2+ were notobserved in E1 mass spectra, some strange ions such as [M-2]+ ions,[M-R]+ ions , [M-R-l]+ ions, [M-2R]+ ions and even [RX]+ ions presented in EIMS by decreasing the electron energy. These phenomena may be explained as R+ rearrangement and intermolecular reaction occurring in the condensed phase. We tried to describe the main routes of fragmentation and high sensitive mass spectra of the fragments oaboutthese compounds.
文摘In this paper, author investigated the effect of the Coulomb potential of the core of atomic helium on the rescattering processes. Through the calculation author concluded that the Coulomb potential effect may not play an important role in causing the discrepancy between the experimental data and theoretical results of Kuchievs model, and the NS ionization is dependent on the frequency of the laser field. Furthermore, it is concluded that the strength of the laser field and the charge number of the core affect the frequency regime corresponding to the peak value of the NS ionization rate.
文摘This work is devoted to experimentally study the characteristics of discharge plasma in high power xenon flashlamps.In the experiments,plasma channel profiles are captured by using a high speed CCD camera,and the radiation energy of the flashlamp is obtained by a pyroelectric energy meter.Voltage and current curves are recorded to shed light on the plasma characteristics.With these diagnostic methods,typical factors influencing the evolution process of plasma channel are studied,including the external electric field and the pre-ionization.The electric potential distribution in the flashlamp influence the plasma channel characteristics the most significantly.The plasma channel pattern for the cases with grounded wires is different from that with ungrounded metal wires.When the wire is ungrounded,it is the coupling voltage between the metal wire and the flashlamp that influences the development of plasma channel.In terms of radiation efficiency,it is proven that there is an optimal interval within 200~300μs between the pre-ionization pulse and the main pulse.
文摘Resonant ionization spectroscopy (RIS) and resonant ionization mass spectroscopy (RIMS) are employed to detect the photodissociation product of sodium iodide molecules in a molecular beam in an intense laser field in the absence of the buffer gases. Time of flight mass spectra is recorded. In particular, the appearances of multiphoton ionization are discussed.
文摘The dependence of the ratio R1 for transfer ionization to single capture for Cq+, Nq+, Oq+, Neq+ ions on Ne target upon the electronic structure of the projectile is studied. For Aq+-Ne collisions the ratio R1 decreases as the atomic number Z of the projectile increases for q=4,5,6,7 sequences which provides strong evidence for the increase of the binding energy of the target valence electron after single electron capture. The increase in binding energy depends both upon the atomic number of the projectile and the target atom.
基金financial support from the National Natural Science Foundation of China(Grant No.21801016)the Science and Technology on Applied Physical Chemistry Laboratory(Grant No.6142602220304)。
文摘In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduced electron transfer(PET)effect.Two perylene diimide isomers PDI-P and PDI-B were designed and synthesized,and their molecular structures were characterized by high-resolution Fourier transform mass spectrometry(HRMS),nuclear magnetic resonance hydrogen and carbon spectroscopy(~1H and~(13)C NMR).The interaction between ionizing radiation and fluorescent molecules was simulated by HCl titration.The results show that combining PDIs and HCl can improve fluorescence through the retro-PET process.Despite the similarities in chemical structures,the fluorescent enhancement multiple of PDI-B with aromatic amine as electron donor is much higher than that of PDI-P with alkyl amine.In the direct irradiation experiments of ionizing radiation,the emission enhancement multiples of PDI-P and PDI-B are 2.01 and 45.4,respectively.Furthermore,density functional theory(DFT)and time-dependent density functional theory(TDDFT)calculations indicate that the HOMO and HOMO-1 energy ranges of PDI-P and PDI-B are 0.54 e V and 1.13 e V,respectively.A wider energy range has a stronger driving force on electrons,which is conducive to fluorescence quenching.Both femtosecond transient absorption spectroscopy(fs-TAS)and transient fluorescence spectroscopy(TFS)tests show that PDI-B has shorter charge separation lifetime and higher electron transfer rate constant.Although both isomers can significantly reduce LOD during PET process,PDI-B with aromatic amine has a wider detection range of 0.118—240 Gy due to its larger emission enhancement,which is a leap of three orders of magnitude.It breaks through the detection range of gamma radiation reported in existing studies,and provides theoretical support for the further study of sensitive and effective new materials for ionizing radiation detection.
文摘An Nd: YAG pulsed laser (145 mJ) was used to ablate aluminum target and Ar was used as protecting gas. Time-and space-resolved spectra of the plasmas under pressure 100 Pa, 1 kPa, 10 kPa and 100 kPa were acquired with time- and space-resolved technique. The characteristics of the plasma radiating under each pressure were briefly described, and the laws of Ar characteristical radiaton were analyzed in detail. Based on the profile of Ar characteristical radiation under these pressure, the relation between protecting gas pressure and its ionization was briefly discussed, and explained with quantum theory. Farther more, the mechanism of ambient gas ionization was investigated. As the result, it was suggested that the main mechanism inducing protecting gas to ionize should be the absorption of the plasma continuum radiation by the gas.