This article summarizes the researches on the middle and upper atmosphere by Chinese scientists in 2010-2012.The focuses are placed on the advances in construction of ground-based remote sensing facilities,the mean st...This article summarizes the researches on the middle and upper atmosphere by Chinese scientists in 2010-2012.The focuses are placed on the advances in construction of ground-based remote sensing facilities,the mean state and long-term changes in the middle atmosphere circulation, the prevailing dynamical processes,and the coupling of the middle atmospheric layers.展开更多
Beach titanomagnetite(TTM)provides a cheap alternative source of Fe and Ti,but this ore is difficult to process to make suitable concentrates for the blast furnace.Recently studies showed that it is feasible to separa...Beach titanomagnetite(TTM)provides a cheap alternative source of Fe and Ti,but this ore is difficult to process to make suitable concentrates for the blast furnace.Recently studies showed that it is feasible to separate Fe and Ti by coal-based direct reduction.In this study,beach TTM was selected as the research object,the effects of reducing agents on reducing atmosphere in coal-based direct reduction of beach TTM were analyzed,and the role of volatiles was also studied.The results showed that when bitumite and coke were used as reducing agents of TTM,the CO produced from volatiles was involved in the reduction reaction,and the generated CO_(2) provided the raw material for the reaction of TTM.The reduction effect of bitumite was better than that of coke.The reason is that bitumite+TTM had a higher gas generation rate and produced a higher CO partial pressure,while coke+TTM had a lower gas generation rate and produced a lower CO partial pressure.When graphite was used as a reducing agent,there was a solid-solid reaction in the early stage in the reaction.With the continuous accumulation of CO_(2),the Boudouad reaction started and accelerated.Graphite+TTM also produced a higher CO partial pressure.展开更多
The effect of the sintering atmospheres (vacuum, N_2, Ar) on the microstructures and properties of the TiC based cermets was studied using XRD, SEM/BSE and energy dispersive spectrometer. Compared with the alloy sinte...The effect of the sintering atmospheres (vacuum, N_2, Ar) on the microstructures and properties of the TiC based cermets was studied using XRD, SEM/BSE and energy dispersive spectrometer. Compared with the alloy sintered in vacuum, the carbon content of the specimen sintered in N_2 and Ar is lower by 0.5%; and the nitrogen content is higher by 0.3% when sintered in nitrogen. The central part of the ring structure may be carbide with either a high W or Ti content. The ring structures are (Ti, W, Ta, Mo, Co, Ni)C solid solutions with different metallic elements and distributions. The composition of the binder phase is (Co, Ni) solid solution with different Ti, W, Ta, Mo, C contents. The structures are uniform for the cermets sintered in vacuum and the properties are the best. When sintered in Ar or N2, the O_2 and N2 in the atmosphere take part in the sintering reaction to break the carbon balance in the cermets to form a shell structure and defects, which results in poor density, microhardness (HV) and transverse rupture strength (TRS).展开更多
The research activities of the middle and upper atmosphere in China paced abig stride in the recent years. This paper provides an brief overview of theadvances in main aspects of the study in China during the past fou...The research activities of the middle and upper atmosphere in China paced abig stride in the recent years. This paper provides an brief overview of theadvances in main aspects of the study in China during the past four years.展开更多
This paper summarizes the research results obtained by Chinese scientists and/or through international collaborations during 2004 to 2006.Within the context of COSPAR,the progresses in the studies of the middle and up...This paper summarizes the research results obtained by Chinese scientists and/or through international collaborations during 2004 to 2006.Within the context of COSPAR,the progresses in the studies of the middle and upper atmosphere in China in the past two years are introduced with focusing the developments in facilities and instruments,and the advancements in scientific issues,e.g.,dynamics related processes,atmospheric constituents,and the coupling with the lower atmosphere.展开更多
In this report we summarize the research results by Chinese scientists in 2012–2014. The focuses are placed on the researches of the middle and upper atmosphere, specifically the researches related to ground-based ob...In this report we summarize the research results by Chinese scientists in 2012–2014. The focuses are placed on the researches of the middle and upper atmosphere, specifically the researches related to ground-based observation capability development, dynamical processes, the property of circulation and chemistry-climate coupling of the middle atmospheric layers.展开更多
In this paper advances on study of middle and upper atmosphere and their cou pling with lower atmosphere in China in recent two years are briefly reviewed.This review emphasized three aspects, ie. (1) analysis and obs...In this paper advances on study of middle and upper atmosphere and their cou pling with lower atmosphere in China in recent two years are briefly reviewed.This review emphasized three aspects, ie. (1) analysis and observation of mid and upper atmosphere over China; (2) theoretical and modelling study of grav ity wave activities in middle atmosphere and their relation to lower atmospheric processes; (3) coupling between the stratosphere and troposphere.展开更多
Ni Fe2O4 ceramics were prepared in different sintering atmospheres. The phase compositions, microstructures and mechanical properties were studied. The results show that the stoichiometric compound Ni Fe2O4 cannot be ...Ni Fe2O4 ceramics were prepared in different sintering atmospheres. The phase compositions, microstructures and mechanical properties were studied. The results show that the stoichiometric compound Ni Fe2O4 cannot be obtained in vacuum or atmospheres with oxygen contents of 2×10-5, 2×10-4 and 2×10-3, respectively. All the samples sintered in above-mentioned atmospheres contain phases of Ni Fe2O4 and Ni O. With increasing oxygen content, Ni Fe2O4 content in the ceramic increases, while Ni O content appears a contrary trend. In vacuum, Ni Fe2O4 ceramic has average grain size of 3.94 μm, and bending strength of85.12 MPa. The changes of the phase composition and mechanical properties of Ni Fe2O4 based cermets are mainly caused by the alteration of their properties of Ni Fe2O4 ceramic.展开更多
A comparative study on the corrosion resistance of NiFe_2O_4 ceramic inert anode for aluminum electrolysis prepared in the different sintering atmosphere was carried out in Na_3AlF_6-Al_2O_3 melt.The results show that...A comparative study on the corrosion resistance of NiFe_2O_4 ceramic inert anode for aluminum electrolysis prepared in the different sintering atmosphere was carried out in Na_3AlF_6-Al_2O_3 melt.The results show that the corrosion rates of NiFe_2O_4 ceramic inert anodes prepared in the vacuum and the atmosphere with oxygen content of 1×10^(-2) are 6.08 cm/a and 2.59 cm/a,respectively.A densification layer is formed at the surface of anode due to some reactions which produce aluminates.For the anode prepared in the atmosphere with oxygen content of 1×10^(-2),the thickness of the densification layer(about 50 μm) is thicker than that(about 20 μm) formed at the surface of anode prepared in the vacuum.The content of NiO and Fe(Ⅱ) in Ni(Ⅱ)x Fe(Ⅱ)1-x Fe(Ⅲ)_2O_4 increases with the decrease of the oxygen content of sintering atmosphere,which reduces the corrosion resistance of the material.展开更多
In this report we summarize the research results by Chinese scientists in 2018–2020.The focuses are placed on the researches of the middle and upper atmosphere,specifically the researches on atmospheric structure and...In this report we summarize the research results by Chinese scientists in 2018–2020.The focuses are placed on the researches of the middle and upper atmosphere,specifically the researches on atmospheric structure and composition,climate and chemistry-climate coupling and climate modelling,dynamics in particular those inducing the coupling of the atmospheric layers.展开更多
This report reviews the researches for the middle and upper atmosphere in 2020-2022 by Chinese scientists.The report consists of five parts introducing primarily the results from the aspects of the development of infr...This report reviews the researches for the middle and upper atmosphere in 2020-2022 by Chinese scientists.The report consists of five parts introducing primarily the results from the aspects of the development of infrastructure,the structure and composition,the climate and modeling,the dynamics for the middle and upper atmosphere,and Coupling between Stratosphere and Troposphere,respectively.展开更多
In this paper we summarize the research results by Chinese scientists in 2016–2018. The focuses are placed on the researches of the middle and upper atmosphere, specifically the researches associated with groundbased...In this paper we summarize the research results by Chinese scientists in 2016–2018. The focuses are placed on the researches of the middle and upper atmosphere, specifically the researches associated with groundbased observation capability development, dynamical processes, and properties of circulation and chemistryclimate coupling of the middle atmospheric layers.展开更多
The laser beam used to establish a communication channel between satellite and ground segments has a small divergence angle and a tiny spot on the Earth's surface,which may lead to the fail of the system.So it'...The laser beam used to establish a communication channel between satellite and ground segments has a small divergence angle and a tiny spot on the Earth's surface,which may lead to the fail of the system.So it's important to study the deflection of laser beam by the Earth's atmosphere and find a way to calibrate this error.Both theoretical analysis and real data processing method are used to obtain the mathematical model for divergence angle of laser communication beam and its correction function.Then the model has been applied to the data,which was used to describe the atmosphere state by traditional ground segments to obtain the critical elevation angle.According to the results of calculation,our conclusion will be that the correction should be done when the critical elevation happens.展开更多
Semiconductors and related fields today hold vast application prospects.The semiconductor wafer fabrication process involves steps such as substrate preparation and epitaxy,which occur in high-temperature corrosive en...Semiconductors and related fields today hold vast application prospects.The semiconductor wafer fabrication process involves steps such as substrate preparation and epitaxy,which occur in high-temperature corrosive environments.Consequently,components like crucibles,susceptors and wafer carriers require carbon-based materials such as graphite and carbon-carbon composites.However,traditional carbon materials underperform in these extreme conditions,failing to effectively address the challenges.This leads to issues including product contamination and shortened equipment lifespan.Therefore,effective protection of carbon materials is crucial.This paper reviews current research status on the preparation methods and properties of corrosion-resistant coatings within relevant domestic and international fields.Preparation methods include various techniques such as physical vapor deposition(PVD),chemical vapor deposition(CVD)and the sol-gel method.Furthermore,it offers perspectives on future research directions for corrosion-resistant coated components in semiconductor equipment.These include exploring novel coating materials,improving coating preparation processes,enhancing coating corrosion resistance,as well as further investigating the interfacial interactions between coatings and carbon substrates to achieve better adhesion and compatibility.展开更多
As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding...As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding scenarios.This paper discusses interferogram modeling and phase distortion cor-rection techniques for spaceborne DASH interferometers.The modeling of phase distortion interferograms with and without Doppler shift for limb observation was conducted,and the effectiveness of the analytical expression was verified through numerical simulation.The simulation results indicate that errors propagate layer by layer while using the onion-peeling inversion algorithm to handle phase-distorted interferograms.In contrast,the phase distortion correction algorithm can achieve effective correction.This phase correction method can be successfully applied to correct phase distortions in the interferograms of the spaceborne DASH interferometer,providing a feasible solution to enhance its measurement accuracy.展开更多
Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high com...Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high computational complexity and insufficient capture of high-frequency phase aberration components,so we proposed a Principal-Component-Analysis-based method for representing phase aberrations.This paper discusses the factors influencing the accuracy of restoration,mainly including the sample space size and the sampling interval of D/r_(0),on the basis of characterizing phase aberrations by Principal Components(PCs).The experimental results show that a larger D/r_(0)sampling interval can ensure the generalization ability and robustness of the principal components in the case of a limited amount of original data,which can help to achieve high-precision deployment of the model in practical applications quickly.In the environment with relatively strong turbulence in the test set of D/r_(0)=24,the use of 34 terms of PCs can improve the corrected Strehl ratio(SR)from 0.007 to 0.1585,while the Strehl ratio of the light spot after restoration using 34 terms of ZPs is only 0.0215,demonstrating almost no correction effect.The results indicate that PCs can serve as a better alternative in representing and restoring the characteristics of atmospheric turbulence induced phase aberrations.These findings pave the way to use PCs of phase aberrations with fewer terms than traditional ZPs to achieve data dimensionality reduction,and offer a reference to accelerate and stabilize the model and deep learning based adaptive optics correction.展开更多
The emergence of laser technology has led to the gradual integration of laser weapon system(LaWS)into military scene,particularly in the field of anti-unmanned aerial vehicle(UAV),showcasing significant potential.Howe...The emergence of laser technology has led to the gradual integration of laser weapon system(LaWS)into military scene,particularly in the field of anti-unmanned aerial vehicle(UAV),showcasing significant potential.However,A current limitation lies in the absence of a comprehensive quantitative approach to assess the capabilities of LaWS.To address this issue,a damage effectiveness characterization model for LaWS is established,taking into account the properties of laser transmission through the atmosphere and the thermal damage effects.By employing this model,key parameters pertaining to the effectiveness of laser damage are determined.The impact of various spatial positions and atmospheric conditions on the damage effectiveness of LaWS have been examined,employing simulation experiments with diverse parameters.The conclusions indicate that the damage effectiveness of LaWS is contingent upon the spatial position of the target,resulting in a diminished effectiveness to damage on distant,low-altitude targets.Additionally,the damage effectiveness of LaWS is heavily reliant on the atmospheric condition,particularly in complex settings such as midday and low visibility conditions,where the damage effectiveness is substantially reduced.This paper provides an accurate and effective calculation method for the rapid decisionmaking of the operators.展开更多
The Chinese Meridian Project(CMP)is a major national science and technology infrastructure constructed in two steps.The first phase of the CMP has been operating for more than a solar cycle.From 2022 to 2023,utilizing...The Chinese Meridian Project(CMP)is a major national science and technology infrastructure constructed in two steps.The first phase of the CMP has been operating for more than a solar cycle.From 2022 to 2023,utilizing the monitoring data collected by the CMP,scientists made major breakthroughs in fields of ionosphere,middle and upper atmosphere,and coupling between layers.The construction of the second phase of the CMP is nearly finished,and the project is expected to operate as a whole in 2025 after national acceptance of the second phase.The whole project was built in an architecture of so-called“One Chain,Three Networks and Four Focuses”.It is promising to make a three-dimensional observation of the whole solar-terrestrial space.The science community is looking forward to the great contribution of the CMP to space weather and space physics research.展开更多
文摘This article summarizes the researches on the middle and upper atmosphere by Chinese scientists in 2010-2012.The focuses are placed on the advances in construction of ground-based remote sensing facilities,the mean state and long-term changes in the middle atmosphere circulation, the prevailing dynamical processes,and the coupling of the middle atmospheric layers.
基金Project(52104257)supported by the National Natural Science Foundation of China。
文摘Beach titanomagnetite(TTM)provides a cheap alternative source of Fe and Ti,but this ore is difficult to process to make suitable concentrates for the blast furnace.Recently studies showed that it is feasible to separate Fe and Ti by coal-based direct reduction.In this study,beach TTM was selected as the research object,the effects of reducing agents on reducing atmosphere in coal-based direct reduction of beach TTM were analyzed,and the role of volatiles was also studied.The results showed that when bitumite and coke were used as reducing agents of TTM,the CO produced from volatiles was involved in the reduction reaction,and the generated CO_(2) provided the raw material for the reaction of TTM.The reduction effect of bitumite was better than that of coke.The reason is that bitumite+TTM had a higher gas generation rate and produced a higher CO partial pressure,while coke+TTM had a lower gas generation rate and produced a lower CO partial pressure.When graphite was used as a reducing agent,there was a solid-solid reaction in the early stage in the reaction.With the continuous accumulation of CO_(2),the Boudouad reaction started and accelerated.Graphite+TTM also produced a higher CO partial pressure.
基金Foundation item: Project(2002AA331090) supported by the Hi-tech Research and Development Program of China Project(06D073) supported by Scientific Research Fund of Education Department of Hunan Province
文摘The effect of the sintering atmospheres (vacuum, N_2, Ar) on the microstructures and properties of the TiC based cermets was studied using XRD, SEM/BSE and energy dispersive spectrometer. Compared with the alloy sintered in vacuum, the carbon content of the specimen sintered in N_2 and Ar is lower by 0.5%; and the nitrogen content is higher by 0.3% when sintered in nitrogen. The central part of the ring structure may be carbide with either a high W or Ti content. The ring structures are (Ti, W, Ta, Mo, Co, Ni)C solid solutions with different metallic elements and distributions. The composition of the binder phase is (Co, Ni) solid solution with different Ti, W, Ta, Mo, C contents. The structures are uniform for the cermets sintered in vacuum and the properties are the best. When sintered in Ar or N2, the O_2 and N2 in the atmosphere take part in the sintering reaction to break the carbon balance in the cermets to form a shell structure and defects, which results in poor density, microhardness (HV) and transverse rupture strength (TRS).
文摘The research activities of the middle and upper atmosphere in China paced abig stride in the recent years. This paper provides an brief overview of theadvances in main aspects of the study in China during the past four years.
基金Supported by the National Natural Science Foundation of China(40374056,40333034)Chinese Academy of Science KZCX3-SW-217,KGCX2-SW-408,KGCX3-SYW-403
文摘This paper summarizes the research results obtained by Chinese scientists and/or through international collaborations during 2004 to 2006.Within the context of COSPAR,the progresses in the studies of the middle and upper atmosphere in China in the past two years are introduced with focusing the developments in facilities and instruments,and the advancements in scientific issues,e.g.,dynamics related processes,atmospheric constituents,and the coupling with the lower atmosphere.
文摘In this report we summarize the research results by Chinese scientists in 2012–2014. The focuses are placed on the researches of the middle and upper atmosphere, specifically the researches related to ground-based observation capability development, dynamical processes, the property of circulation and chemistry-climate coupling of the middle atmospheric layers.
基金Supported by the National Natural Science Foundation of China(No. 40175002, 40075007) and The Chinese Academy of Sciences.
文摘In this paper advances on study of middle and upper atmosphere and their cou pling with lower atmosphere in China in recent two years are briefly reviewed.This review emphasized three aspects, ie. (1) analysis and observation of mid and upper atmosphere over China; (2) theoretical and modelling study of grav ity wave activities in middle atmosphere and their relation to lower atmospheric processes; (3) coupling between the stratosphere and troposphere.
基金Project(2008AA030503)supported by the National High Technology Research and Development Program of ChinaProject(51474238)supported by the National Natural Science Foundation of China
文摘Ni Fe2O4 ceramics were prepared in different sintering atmospheres. The phase compositions, microstructures and mechanical properties were studied. The results show that the stoichiometric compound Ni Fe2O4 cannot be obtained in vacuum or atmospheres with oxygen contents of 2×10-5, 2×10-4 and 2×10-3, respectively. All the samples sintered in above-mentioned atmospheres contain phases of Ni Fe2O4 and Ni O. With increasing oxygen content, Ni Fe2O4 content in the ceramic increases, while Ni O content appears a contrary trend. In vacuum, Ni Fe2O4 ceramic has average grain size of 3.94 μm, and bending strength of85.12 MPa. The changes of the phase composition and mechanical properties of Ni Fe2O4 based cermets are mainly caused by the alteration of their properties of Ni Fe2O4 ceramic.
基金Projects(51474238,51334002)supported by the National Natural Science Foundation of China
文摘A comparative study on the corrosion resistance of NiFe_2O_4 ceramic inert anode for aluminum electrolysis prepared in the different sintering atmosphere was carried out in Na_3AlF_6-Al_2O_3 melt.The results show that the corrosion rates of NiFe_2O_4 ceramic inert anodes prepared in the vacuum and the atmosphere with oxygen content of 1×10^(-2) are 6.08 cm/a and 2.59 cm/a,respectively.A densification layer is formed at the surface of anode due to some reactions which produce aluminates.For the anode prepared in the atmosphere with oxygen content of 1×10^(-2),the thickness of the densification layer(about 50 μm) is thicker than that(about 20 μm) formed at the surface of anode prepared in the vacuum.The content of NiO and Fe(Ⅱ) in Ni(Ⅱ)x Fe(Ⅱ)1-x Fe(Ⅲ)_2O_4 increases with the decrease of the oxygen content of sintering atmosphere,which reduces the corrosion resistance of the material.
文摘In this report we summarize the research results by Chinese scientists in 2018–2020.The focuses are placed on the researches of the middle and upper atmosphere,specifically the researches on atmospheric structure and composition,climate and chemistry-climate coupling and climate modelling,dynamics in particular those inducing the coupling of the atmospheric layers.
文摘This report reviews the researches for the middle and upper atmosphere in 2020-2022 by Chinese scientists.The report consists of five parts introducing primarily the results from the aspects of the development of infrastructure,the structure and composition,the climate and modeling,the dynamics for the middle and upper atmosphere,and Coupling between Stratosphere and Troposphere,respectively.
文摘In this paper we summarize the research results by Chinese scientists in 2016–2018. The focuses are placed on the researches of the middle and upper atmosphere, specifically the researches associated with groundbased observation capability development, dynamical processes, and properties of circulation and chemistryclimate coupling of the middle atmospheric layers.
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA04080201)。
文摘The laser beam used to establish a communication channel between satellite and ground segments has a small divergence angle and a tiny spot on the Earth's surface,which may lead to the fail of the system.So it's important to study the deflection of laser beam by the Earth's atmosphere and find a way to calibrate this error.Both theoretical analysis and real data processing method are used to obtain the mathematical model for divergence angle of laser communication beam and its correction function.Then the model has been applied to the data,which was used to describe the atmosphere state by traditional ground segments to obtain the critical elevation angle.According to the results of calculation,our conclusion will be that the correction should be done when the critical elevation happens.
基金National Natural Science Foundation of China(12002196,12102140)。
文摘Semiconductors and related fields today hold vast application prospects.The semiconductor wafer fabrication process involves steps such as substrate preparation and epitaxy,which occur in high-temperature corrosive environments.Consequently,components like crucibles,susceptors and wafer carriers require carbon-based materials such as graphite and carbon-carbon composites.However,traditional carbon materials underperform in these extreme conditions,failing to effectively address the challenges.This leads to issues including product contamination and shortened equipment lifespan.Therefore,effective protection of carbon materials is crucial.This paper reviews current research status on the preparation methods and properties of corrosion-resistant coatings within relevant domestic and international fields.Preparation methods include various techniques such as physical vapor deposition(PVD),chemical vapor deposition(CVD)and the sol-gel method.Furthermore,it offers perspectives on future research directions for corrosion-resistant coated components in semiconductor equipment.These include exploring novel coating materials,improving coating preparation processes,enhancing coating corrosion resistance,as well as further investigating the interfacial interactions between coatings and carbon substrates to achieve better adhesion and compatibility.
文摘As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding scenarios.This paper discusses interferogram modeling and phase distortion cor-rection techniques for spaceborne DASH interferometers.The modeling of phase distortion interferograms with and without Doppler shift for limb observation was conducted,and the effectiveness of the analytical expression was verified through numerical simulation.The simulation results indicate that errors propagate layer by layer while using the onion-peeling inversion algorithm to handle phase-distorted interferograms.In contrast,the phase distortion correction algorithm can achieve effective correction.This phase correction method can be successfully applied to correct phase distortions in the interferograms of the spaceborne DASH interferometer,providing a feasible solution to enhance its measurement accuracy.
文摘Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high computational complexity and insufficient capture of high-frequency phase aberration components,so we proposed a Principal-Component-Analysis-based method for representing phase aberrations.This paper discusses the factors influencing the accuracy of restoration,mainly including the sample space size and the sampling interval of D/r_(0),on the basis of characterizing phase aberrations by Principal Components(PCs).The experimental results show that a larger D/r_(0)sampling interval can ensure the generalization ability and robustness of the principal components in the case of a limited amount of original data,which can help to achieve high-precision deployment of the model in practical applications quickly.In the environment with relatively strong turbulence in the test set of D/r_(0)=24,the use of 34 terms of PCs can improve the corrected Strehl ratio(SR)from 0.007 to 0.1585,while the Strehl ratio of the light spot after restoration using 34 terms of ZPs is only 0.0215,demonstrating almost no correction effect.The results indicate that PCs can serve as a better alternative in representing and restoring the characteristics of atmospheric turbulence induced phase aberrations.These findings pave the way to use PCs of phase aberrations with fewer terms than traditional ZPs to achieve data dimensionality reduction,and offer a reference to accelerate and stabilize the model and deep learning based adaptive optics correction.
基金supported by the National Social Science Foundation of China(2022-SKJJ-C-037)the National Natural Science Foundation of China General Program(72071209).
文摘The emergence of laser technology has led to the gradual integration of laser weapon system(LaWS)into military scene,particularly in the field of anti-unmanned aerial vehicle(UAV),showcasing significant potential.However,A current limitation lies in the absence of a comprehensive quantitative approach to assess the capabilities of LaWS.To address this issue,a damage effectiveness characterization model for LaWS is established,taking into account the properties of laser transmission through the atmosphere and the thermal damage effects.By employing this model,key parameters pertaining to the effectiveness of laser damage are determined.The impact of various spatial positions and atmospheric conditions on the damage effectiveness of LaWS have been examined,employing simulation experiments with diverse parameters.The conclusions indicate that the damage effectiveness of LaWS is contingent upon the spatial position of the target,resulting in a diminished effectiveness to damage on distant,low-altitude targets.Additionally,the damage effectiveness of LaWS is heavily reliant on the atmospheric condition,particularly in complex settings such as midday and low visibility conditions,where the damage effectiveness is substantially reduced.This paper provides an accurate and effective calculation method for the rapid decisionmaking of the operators.
基金Supported by National Major Science and Technology Infrastructure Construction Project:the Chinese Meridian Project(2017-000052-73-01-002390)。
文摘The Chinese Meridian Project(CMP)is a major national science and technology infrastructure constructed in two steps.The first phase of the CMP has been operating for more than a solar cycle.From 2022 to 2023,utilizing the monitoring data collected by the CMP,scientists made major breakthroughs in fields of ionosphere,middle and upper atmosphere,and coupling between layers.The construction of the second phase of the CMP is nearly finished,and the project is expected to operate as a whole in 2025 after national acceptance of the second phase.The whole project was built in an architecture of so-called“One Chain,Three Networks and Four Focuses”.It is promising to make a three-dimensional observation of the whole solar-terrestrial space.The science community is looking forward to the great contribution of the CMP to space weather and space physics research.