期刊文献+
共找到61,276篇文章
< 1 2 250 >
每页显示 20 50 100
Detection of geohazards caused by human disturbance activities based on convolutional neural networks
1
作者 ZHANG Heng ZHANG Diandian +1 位作者 YUAN Da LIU Tao 《水利水电技术(中英文)》 北大核心 2025年第S1期731-738,共8页
Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the envir... Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed. 展开更多
关键词 convolutional neural network DETECTION environment damage CLIFF LANDSLIDE
在线阅读 下载PDF
Learning the parameters of a class of stochastic Lotka-Volterra systems with neural networks
2
作者 WANG Zhanpeng WANG Lijin 《中国科学院大学学报(中英文)》 北大核心 2025年第1期20-25,共6页
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f... In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method. 展开更多
关键词 stochastic Lotka-Volterra systems neural networks Euler-Maruyama scheme parameter estimation
在线阅读 下载PDF
A diagnosis method based on graph neural networks embedded with multirelationships of intrinsic mode functions for multiple mechanical faults
3
作者 Bin Wang Manyi Wang +3 位作者 Yadong Xu Liangkuan Wang Shiyu Chen Xuanshi Chen 《Defence Technology(防务技术)》 2025年第8期364-373,共10页
Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types o... Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems. 展开更多
关键词 Fault diagnosis Graph neural networks Graph topological structure Intrinsic mode functions Feature learning
在线阅读 下载PDF
An intelligent control method based on artificial neural network for numerical flight simulation of the basic finner projectile with pitching maneuver 被引量:1
4
作者 Yiming Liang Guangning Li +3 位作者 Min Xu Junmin Zhao Feng Hao Hongbo Shi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期663-674,共12页
In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a... In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application. 展开更多
关键词 Numerical virtual flight Intelligent control BP neural network PID Moving chimera grid
在线阅读 下载PDF
An efficient and accurate numerical method for simulating close-range blast loads of cylindrical charges based on neural network
5
作者 Ting Liu Changhai Chen +2 位作者 Han Li Yaowen Yu Yuansheng Cheng 《Defence Technology(防务技术)》 2025年第2期257-271,共15页
To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim... To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures. 展开更多
关键词 Close-range air blast load Cylindrical charge Numerical method neural network CEL method CONWEP model
在线阅读 下载PDF
TDNN:A novel transfer discriminant neural network for gear fault diagnosis of ammunition loading system manipulator
6
作者 Ming Li Longmiao Chen +3 位作者 Manyi Wang Liuxuan Wei Yilin Jiang Tianming Chen 《Defence Technology(防务技术)》 2025年第3期84-98,共15页
The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fau... The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fault characteristics under different loads is markedly inconsistent,and data is hard to label,which makes it difficult for the traditional diagnosis method based on single-condition training to generalize to different conditions.To address these issues,the paper proposes a novel transfer discriminant neural network(TDNN)for gear fault diagnosis.Specifically,an optimized joint distribution adaptive mechanism(OJDA)is designed to solve the distribution alignment problem between two domains.To improve the classification effect within the domain and the feature recognition capability for a few labeled data,metric learning is introduced to distinguish features from different fault categories.In addition,TDNN adopts a new pseudo-label training strategy to achieve label replacement by comparing the maximum probability of the pseudo-label with the test result.The proposed TDNN is verified in the experimental data set of the artillery manipulator device,and the diagnosis can achieve 99.5%,significantly outperforming other traditional adaptation methods. 展开更多
关键词 Manipulator gear fault diagnosis Reciprocating machine Domain adaptation Pseudo-label training strategy Transfer discriminant neural network
在线阅读 下载PDF
High-resolution reconstruction of the ablative RT instability flowfield via convolutional neural networks
7
作者 Xia Zhiyang Kuang Yuanyuan +1 位作者 Lu Yan Yang Ming 《强激光与粒子束》 CAS CSCD 北大核心 2024年第12期42-49,共8页
High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution fl... High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution flow field data,while the high experiment cost and computing resources for simulation hinder the specificanalysis of flow field evolution.With the development of deep learning technology,convolutional neural networks areused to achieve high-resolution reconstruction of the flow field.In this paper,an ordinary convolutional neuralnetwork and a multi-time-path convolutional neural network are established for the ablative Rayleigh-Taylorinstability.These two methods can reconstruct the high-resolution flow field in just a few seconds,and further greatlyenrich the application of high-resolution reconstruction technology in fluid instability.Compared with the ordinaryconvolutional neural network,the multi-time-path convolutional neural network model has smaller error and canrestore more details of the flow field.The influence of low-resolution flow field data obtained by the two poolingmethods on the convolutional neural networks model is also discussed. 展开更多
关键词 convolutional neural networks ablative Rayleigh-Taylor instability high-resolutionreconstruction multi-time-path pooling
在线阅读 下载PDF
Adaptive Bayesian inversion of pore water pressures based on artificial neural network : An earth dam case study
8
作者 AN Lu CARVAJAL Claudio +4 位作者 DIAS Daniel PEYRAS Laurent JENCK Orianne BREUL Pierre ZHANG Ting-ting 《Journal of Central South University》 CSCD 2024年第11期3930-3947,共18页
Most earth-dam failures are mainly due to seepage,and an accurate assessment of the permeability coefficient provides an indication to avoid a disaster.Parametric uncertainties are encountered in the seepage analysis,... Most earth-dam failures are mainly due to seepage,and an accurate assessment of the permeability coefficient provides an indication to avoid a disaster.Parametric uncertainties are encountered in the seepage analysis,and may be reduced by an inverse procedure that calibrates the simulation results to observations on the real system being simulated.This work proposes an adaptive Bayesian inversion method solved using artificial neural network(ANN)based Markov Chain Monte Carlo simulation.The optimized surrogate model achieves a coefficient of determination at 0.98 by ANN with 247 samples,whereby the computational workload can be greatly reduced.It is also significant to balance the accuracy and efficiency of the ANN model by adaptively updating the sample database.The enrichment samples are obtained from the posterior distribution after iteration,which allows a more accurate and rapid manner to the target posterior.The method was then applied to the hydraulic analysis of an earth dam.After calibrating the global permeability coefficient of the earth dam with the pore water pressure at the downstream unsaturated location,it was validated by the pore water pressure monitoring values at the upstream saturated location.In addition,the uncertainty in the permeability coefficient was reduced,from 0.5 to 0.05.It is shown that the provision of adequate prior information is valuable for improving the efficiency of the Bayesian inversion. 展开更多
关键词 earth dam permeability coefficient pore water pressure monitoring data bayesian inversion artificial neural network
在线阅读 下载PDF
Component Content Soft-sensor Based on Neural Networks in Rare-earth Countercurrent Extraction Process 被引量:13
9
作者 YANG Hui CHAI Tian-You 《自动化学报》 EI CSCD 北大核心 2006年第4期489-495,共7页
Throught fusion of the mechanism modeling and the neural networks modeling,a compo- nent content soft-sensor,which is composed of the equilibrium calculation model for multi-component rare earth extraction and the err... Throught fusion of the mechanism modeling and the neural networks modeling,a compo- nent content soft-sensor,which is composed of the equilibrium calculation model for multi-component rare earth extraction and the error compensation model of fuzzy system,is proposed to solve the prob- lem that the component content in countercurrent rare-earth extraction process is hardly measured on-line.An industry experiment in the extraction Y process by HAB using this hybrid soft-sensor proves its effectiveness. 展开更多
关键词 RARE-EartH countercurrent extraction soft-sensor equilibrium calculation model neural networks
在线阅读 下载PDF
Artificial Neural Networks Applied to Landslide Susceptibility Mapping in the Northern Area of the Central Rif(Morocco)
10
作者 M.Amharrak J.El khattabi +2 位作者 B.Louche L.Asebriy E.Carlier 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期64-64,共1页
Recently,Artificial Neural Networks(ANNs)have been used for various scientific and engineering applications essentially because they allow the modeling of a process,which starts from the database containing the variab... Recently,Artificial Neural Networks(ANNs)have been used for various scientific and engineering applications essentially because they allow the modeling of a process,which starts from the database containing the variables that describe that particular process.They have already been applied to the study of landslides in particular,with reference to the indirect determination of the triggering 展开更多
关键词 LANDSLIDE SUSCEPTIBILITY statistical approach artificial neural network CENTRAL RIF
在线阅读 下载PDF
Combine Gearbox Aided Design Based on Artificial Neural Networks
11
作者 WANGJin-wu 《Journal of Northeast Agricultural University(English Edition)》 CAS 2005年第1期83-86,共4页
In the optimum design of the self-propelled combine gearbox, the knowledge of ANN is applied to overcome slow calculation and low design efficiency. We did the normative approach of the charts information,then solved ... In the optimum design of the self-propelled combine gearbox, the knowledge of ANN is applied to overcome slow calculation and low design efficiency. We did the normative approach of the charts information,then solved the difficult problems in the design process and get satisfactory results. We also completed three-dimensional design of the gearbox in order to verify the rationality of the design visually. 展开更多
关键词 COMBINE neural networks aided design
在线阅读 下载PDF
Backflow Transformation for A=3 Nuclei with Artificial Neural Networks
12
作者 YANG Yilong ZHAO Pengwei 《原子能科学技术》 EI CAS CSCD 北大核心 2023年第4期673-678,共6页
A novel variational wave function defined as a Jastrow factor multiplying a backflow transformed Slater determinant was developed for A=3 nuclei.The Jastrow factor and backflow transformation were represented by artif... A novel variational wave function defined as a Jastrow factor multiplying a backflow transformed Slater determinant was developed for A=3 nuclei.The Jastrow factor and backflow transformation were represented by artificial neural networks.With this newly developed wave function,variational Monte Carlo calculations were carried out for3H and3He nuclei starting from a nuclear Hamiltonian based on the leadingorder pionless effective field theory.The obtained ground-state energy and charge radii were successfully benchmarked against the results of the highly-accurate hypersphericalharmonics method.The backflow transformation plays a crucial role in improving the nodal surface of the Slater determinant and,thus,providing accurate ground-state energy. 展开更多
关键词 nuclear many-body problem quantum Monte Carlo artificial neural network backflow transformation
在线阅读 下载PDF
Estimation of equivalent internal-resistance of PEM fuel cell using artificial neural networks
13
作者 李炜 朱新坚 莫志军 《Journal of Central South University of Technology》 EI 2007年第5期690-695,共6页
A practical method of estimation for the internal-resistance of polymer electrolyte membrane fuel cell (PEMFC) stack was adopted based on radial basis function (RBF) neural networks. In the training process, k-means c... A practical method of estimation for the internal-resistance of polymer electrolyte membrane fuel cell (PEMFC) stack was adopted based on radial basis function (RBF) neural networks. In the training process, k-means clustering algorithm was applied to select the network centers of the input training data. Furthermore, an equivalent electrical-circuit model with this internal-resistance was developed for investigation on the stack. Finally using the neural networks model of the equivalent resistance in the PEMFC stack, the simulation results of the estimation of equivalent internal-resistance of PEMFC were presented. The results show that this electrical PEMFC model is effective and is suitable for the study of control scheme, fault detection and the engineering analysis of electrical circuits. 展开更多
关键词 polymer electrolyte membrane fuel cell(PEMFC) equivalent internal-resistance radial basis function neural networks
在线阅读 下载PDF
Chemometric Amylose Modeling and Sample Selection for Global Calibration Using Artificial Neural Networks
14
作者 SHIMIZU N OKADOME H +2 位作者 WADA D KIMURA T OHTSUBO K 《食品科学》 EI CAS CSCD 北大核心 2008年第8期118-124,共7页
Chemometric amylose modeling for global calibration,using whole grain near infrared transmittance spectra and sample selection,was used in an artificial neural network(ANN) ,to assess the global and local models gener... Chemometric amylose modeling for global calibration,using whole grain near infrared transmittance spectra and sample selection,was used in an artificial neural network(ANN) ,to assess the global and local models generated,based on samples of newly bred Indica,Japonica and rice. Global sample sets had a wide range of sample variation for amylose content(0 to 25.9%) . The local sample set,Japonica sample,had relatively low amylose content and a narrow sample variation(amylose;12.3% to 21.0%) . For sample selection the CENTER algorithm was applied to generate calibration,validation and stop sample sets. Spectral preprocessing was found to reduce the optimum number of partial least squares(PLS) components for amylose content and thus enhance the robustness of the local calibration. The best model was found to be an ANN global calibration with spectral preprocessing;the next was a PLS global calibration using standard spectra. These results pose the question whether an ANN algorithm with spectral preprocessing could be developed for global and local calibration models or whether PLS without spectral preprocessing should be developed for global calibration models. We suggest that global calibration models incorporating an ANN may be used as a universal calibration model. 展开更多
关键词 直链淀粉 人工神经网络 分析方法 食品标准
在线阅读 下载PDF
基于ART-2人工神经网络算法的煤矿应急管理能力综合评价模型研究
15
作者 张玉华 丁立培 王宇 《中国矿业》 北大核心 2025年第8期145-151,共7页
在评价煤矿应急管理能力时,为指标分配权重的过程易产生数据缺失值,导致指标计算精度较差,影响了评价结果的准确性。为此,构建基于ART-2人工神经网络算法的煤矿应急管理能力综合评价模型,以提升评价的客观性与准确性。首先,依据煤矿应... 在评价煤矿应急管理能力时,为指标分配权重的过程易产生数据缺失值,导致指标计算精度较差,影响了评价结果的准确性。为此,构建基于ART-2人工神经网络算法的煤矿应急管理能力综合评价模型,以提升评价的客观性与准确性。首先,依据煤矿应急管理体系结构,对打分数值进行规范化处理,将其转化为类别样本矢量集,为后续利用ART-2人工神经网络算法进行指标筛选提供标准化的数据输入。其次,运用ART-2人工神经网络算法对煤矿管理能力指标进行筛选。再次,组合网络层级中的元素,构建评价指标间相互影响的未加权矩阵。该矩阵全面反映了各评价指标之间的关联关系,为后续的权重分配提供依据。在目标层神经元节点处设置警戒数值,通过ART-2人工神经网络对未加权矩阵进行训练和优化。在此过程中,算法能够自动调整和修正指标权重,降低权重分配的主观性和模糊性。最后,根据修正后的权值,重新对各层神经元节点处的指标评分进行计算,得出最终的评价结果。研究结论表明,基于ART-2人工神经网络算法的煤矿应急管理能力评价模型,在解决传统评价方法中权重分配主观性强、数据易缺失等问题上具有显著优势,能够为煤矿应急管理决策提供更科学、合理的依据,有助于煤矿企业更好地评估和提升应急管理能力,从而保障煤矿的安全生产。 展开更多
关键词 art-2人工神经网络 煤矿应急管理能力 类别样本矢量集 网络层级 警戒数值
在线阅读 下载PDF
Fast solution to the free return orbit's reachable domain of the manned lunar mission by deep neural network 被引量:2
16
作者 YANG Luyi LI Haiyang +1 位作者 ZHANG Jin ZHU Yuehe 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期495-508,共14页
It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly eval... It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model. 展开更多
关键词 manned lunar mission free return orbit reachable domain(RD) deep neural network computation efficiency
在线阅读 下载PDF
Trajectory tracking guidance of interceptor via prescribed performance integral sliding mode with neural network disturbance observer 被引量:1
17
作者 Wenxue Chen Yudong Hu +1 位作者 Changsheng Gao Ruoming An 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期412-429,共18页
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system... This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots. 展开更多
关键词 BP network neural Integral sliding mode control(ISMC) Missile defense Prescribed performance function(PPF) State observer Tracking guidance system
在线阅读 下载PDF
Convolutional neural networks for time series classification 被引量:52
18
作者 Bendong Zhao Huanzhang Lu +2 位作者 Shangfeng Chen Junliang Liu Dongya Wu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第1期162-169,共8页
Time series classification is an important task in time series data mining, and has attracted great interests and tremendous efforts during last decades. However, it remains a challenging problem due to the nature of ... Time series classification is an important task in time series data mining, and has attracted great interests and tremendous efforts during last decades. However, it remains a challenging problem due to the nature of time series data: high dimensionality, large in data size and updating continuously. The deep learning techniques are explored to improve the performance of traditional feature-based approaches. Specifically, a novel convolutional neural network (CNN) framework is proposed for time series classification. Different from other feature-based classification approaches, CNN can discover and extract the suitable internal structure to generate deep features of the input time series automatically by using convolution and pooling operations. Two groups of experiments are conducted on simulated data sets and eight groups of experiments are conducted on real-world data sets from different application domains. The final experimental results show that the proposed method outperforms state-of-the-art methods for time series classification in terms of the classification accuracy and noise tolerance. © 1990-2011 Beijing Institute of Aerospace Information. 展开更多
关键词 CONVOLUTION Data mining neural networks Time series Virtual reality
在线阅读 下载PDF
Learning algorithm and application of quantum BP neural networks based on universal quantum gates 被引量:26
19
作者 Li Panchi Li Shiyong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期167-174,共8页
A quantum BP neural networks model with learning algorithm is proposed. First, based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate, a quantum neuron model is constructed, which is... A quantum BP neural networks model with learning algorithm is proposed. First, based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate, a quantum neuron model is constructed, which is composed of input, phase rotation, aggregation, reversal rotation and output. In this model, the input is described by qubits, and the output is given by the probability of the state in which (1) is observed. The phase rotation and the reversal rotation are performed by the universal quantum gates. Secondly, the quantum BP neural networks model is constructed, in which the output layer and the hide layer are quantum neurons. With the application of the gradient descent algorithm, a learning algorithm of the model is proposed, and the continuity of the model is proved. It is shown that this model and algorithm are superior to the conventional BP networks in three aspects: convergence speed, convergence rate and robustness, by two application examples of pattern recognition and function approximation. 展开更多
关键词 quantum computing universal quantum gate quantum neuron quantum neural networks
在线阅读 下载PDF
Nonlinear Dynamics and Stability of Neural Networks with Delay-Time 被引量:14
20
作者 L. C. Jiao, member, IEEE, and Zheng Bao, Senior member, IEEECenter for Neural Networks and Institute of Elec. Eng, Xidian University, Xian 710071, China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1992年第2期13-26,共14页
In this paper we study the dynamic properties and stabilities of neural networks with delay-time (which includes the time-varying case) by differential inequalities and Lyapunov function approaches. The criteria of co... In this paper we study the dynamic properties and stabilities of neural networks with delay-time (which includes the time-varying case) by differential inequalities and Lyapunov function approaches. The criteria of connective stability, robust stability, Lyapunov stability, asymptotic atability, exponential stability and Lagrange stability of neural networks with delay-time are established, and the results obtained are very useful for the design, implementation and application of adaptive learning neural networks. 展开更多
关键词 Nonlinear dynamics STABILITY neural network.
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部