期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ARIMA模型法分析网络流量 被引量:8
1
作者 金旗 裴昌幸 朱畅华 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2003年第1期6-10,共5页
网络流量是网络规划设计、仿真、保证服务质量以及网管的重要参考因素.利用ARIMA模型法,在研究网络流量具有成长性、非平稳性的基础上得到了更为实用的结论.通过分段平均、取自然对数、一次差分可以把具成长性、非平稳性的网络流量变换... 网络流量是网络规划设计、仿真、保证服务质量以及网管的重要参考因素.利用ARIMA模型法,在研究网络流量具有成长性、非平稳性的基础上得到了更为实用的结论.通过分段平均、取自然对数、一次差分可以把具成长性、非平稳性的网络流量变换为一个短时相关的平稳时间序列.通过对实际流量数据的分析,表明该方法计算量小、算法易于实现,可为网络建设的中、长期规划提供有效的预测手段. 展开更多
关键词 网络流量 arima模型法 计算机网络 网络管理
在线阅读 下载PDF
Hybrid LEAP modeling method for long-term energy demand forecasting of regions with limited statistical data 被引量:4
2
作者 CHEN Rui RAO Zheng-hua LIAO Sheng-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2136-2148,共13页
An accurate long-term energy demand forecasting is essential for energy planning and policy making. However, due to the immature energy data collecting and statistical methods, the available data are usually limited i... An accurate long-term energy demand forecasting is essential for energy planning and policy making. However, due to the immature energy data collecting and statistical methods, the available data are usually limited in many regions. In this paper, on the basis of comprehensive literature review, we proposed a hybrid model based on the long-range alternative energy planning (LEAP) model to improve the accuracy of energy demand forecasting in these regions. By taking Hunan province, China as a typical case, the proposed hybrid model was applied to estimating the possible future energy demand and energy-saving potentials in different sectors. The structure of LEAP model was estimated by Sankey energy flow, and Leslie matrix and autoregressive integrated moving average (ARIMA) models were used to predict the population, industrial structure and transportation turnover, respectively. Monte-Carlo method was employed to evaluate the uncertainty of forecasted results. The results showed that the hybrid model combined with scenario analysis provided a relatively accurate forecast for the long-term energy demand in regions with limited statistical data, and the average standard error of probabilistic distribution in 2030 energy demand was as low as 0.15. The prediction results could provide supportive references to identify energy-saving potentials and energy development pathways. 展开更多
关键词 energy demand forecasting with limited data hybrid LEAP model arima model Leslie matrix Monte-Carlo method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部