期刊文献+
共找到785篇文章
< 1 2 40 >
每页显示 20 50 100
基于ARIMA/RBF-NN的时间序列水质预测模型研究 被引量:10
1
作者 周志青 邹国防 +1 位作者 王磊 王磊 《科技通报》 北大核心 2017年第9期236-240,共5页
水质的时间变化趋势预测是进行水环境管理的前提,预测模型在很大程度上决定了预测精度的高低,如何选取有效的时间序列水质预测模型是目前的研究热点之一。以平西湖为研究对象,根据2009-2011年间TN、TP和CODMn月监测数据,提出了一种基于A... 水质的时间变化趋势预测是进行水环境管理的前提,预测模型在很大程度上决定了预测精度的高低,如何选取有效的时间序列水质预测模型是目前的研究热点之一。以平西湖为研究对象,根据2009-2011年间TN、TP和CODMn月监测数据,提出了一种基于ARIMA和RBF-NN的组合模型,该模型能同时反映水质的渐变性和非线性变化的特点,最后用5个精度评价指标对组合模型的预测结果进行了评价,并和基于ARMMA和时间序列神经网络预测模型的预测结果进行了比较。结果表明,大部分指标显示ARIMA/RBF-NN组合模型对受内生变量影响较大的TN、TP的预测效果最好,ARIMA模型对受外生变量影响较大的CODMn的预测效果最优。 展开更多
关键词 arima/rbf-nn 时间序列 水质
在线阅读 下载PDF
基于机器学习优化的ARIMA模型对进口食品不合格情况预测
2
作者 徐君 赵思明 熊善柏 《粮食与饲料工业》 2025年第1期32-36,共5页
进口食品安全风险是一个动态、非线性的过程,单一的模型很难做出准确拟合和预测。以2010-01—2021-08间的进口食品不合格情况数据为研究对象,采用自动回归差分整合滑动平均模型(ARIMA)进行建模,运用机器学习方法中的支持向量机(SVM)算... 进口食品安全风险是一个动态、非线性的过程,单一的模型很难做出准确拟合和预测。以2010-01—2021-08间的进口食品不合格情况数据为研究对象,采用自动回归差分整合滑动平均模型(ARIMA)进行建模,运用机器学习方法中的支持向量机(SVM)算法对模型进行优化,建立ARIMA-SVM组合模型。以平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分率误差(MAPE)和判定系数(R~2)等评价指标作为模型的评价指标。结果发现:ARIMA-SVM组合模型比单独运用ARIMA模型和SVM模型建立的模型的精度高,对进口食品不合格情况的短期预测效果更好。 展开更多
关键词 进口食品 食品安全 arima-SVM模型 机器学习
在线阅读 下载PDF
融合多源因素回归和ARIMA-LSTM的露天矿地表形变趋势分析
3
作者 李如仁 李梦晨 +1 位作者 葛永权 刘明霞 《金属矿山》 北大核心 2025年第1期186-197,共12页
露天矿山大规模开采引发的地表形变严重威胁了周边基础设施的稳固性及附近民众生命财产安全,形变演化趋势的精准预测对于保障矿山安全运营具有重要意义。针对当前形变监测技术的时空采样率低、成本高,以及数据处理过程中影响因子筛选困... 露天矿山大规模开采引发的地表形变严重威胁了周边基础设施的稳固性及附近民众生命财产安全,形变演化趋势的精准预测对于保障矿山安全运营具有重要意义。针对当前形变监测技术的时空采样率低、成本高,以及数据处理过程中影响因子筛选困难、趋势预测精度欠佳等问题,以辽宁省鞍山市露天矿集中分布区为工程背景,提出了一种融合自回归差分移动平均(Autoregressive Integrated Moving Average,ARIMA)模型—长短期记忆网络(Long Short-Term Memory,LSTM)模型的多源因素融合回归的露天矿地表形变演化趋势分析方法。首先,利用短基线子集干涉测量(Small Baseline Subset Interferometric Synthetic Aperture Radar,SBAS-InSAR)技术开展2020年1月—2022年4月期间研究区地表形变的长时序监测,获取该时段内地表形变时空分布特征。然后,耦合因子分析及灰色关联分析法提取形变主影响因子,基于皮尔逊相关系数(Pearson)验证影响因子的筛选效果,同时考虑地表相邻点位形变的联动效应,构建了多源异构数据融合回归序列。在此基础上,引入自回归差分移动平均(ARIMA)模型改进的长短期记忆网络(LSTM)模型开展形变趋势预测,并采用平均绝对误差(Mean Absolute Error,MAE)、标准误差(Root Mean Square Error,RMSE)以及平均百分比误差(Mean Absolute Percentage Error,MAPE)评估所提方法的预测性能。结果表明:监测期内东鞍山矿东部、大孤山矿中部以及鞍千矿东部沉降相对严重,年均沉降速率最高达166.41 mm/a。耦合因子分析及灰色关联度法提取的影响因子合理可靠,融合高程、地形起伏度及累积降雨量等因子的形变序列更贴合矿区地表真实形变过程。与ARIMA-LSTM模型相比,基于多源因素融合回归模型的预测误差MAE、RMSE、MAPE分别降低了48.0%、16.7%和25.5%,预测精度有所改善且能够有效反映形变累积的整体趋势。 展开更多
关键词 露天矿 形变监测 多源数据融合 形变趋势预测 SBAS-InSAR arima-LSTM
在线阅读 下载PDF
结合ARIMA方法与GMS模拟洋河流域地下水水位
4
作者 孙福宝 童菊秀 +1 位作者 梁畅 仝锦威 《水资源与水工程学报》 北大核心 2025年第1期18-28,共11页
传统地下水数值模型在预测未来地下水水位时,常受限于难以获取的降水与蒸发数据。为解决这一问题,基于ARIMA模型预测降水与蒸发时间序列数据,并结合GMS地下水流模型,模拟洋河流域地下水水位变化过程,提出一种改进的地下水水位预测方法... 传统地下水数值模型在预测未来地下水水位时,常受限于难以获取的降水与蒸发数据。为解决这一问题,基于ARIMA模型预测降水与蒸发时间序列数据,并结合GMS地下水流模型,模拟洋河流域地下水水位变化过程,提出一种改进的地下水水位预测方法。通过分析洋河流域2000—2020年的历史气象数据,使用ARIMA模型预测2021年的降水与蒸发量,将预测结果输入GMS模型,开展地下水水位模拟实验。结果表明:GMS模型对洋河流域地下水水位的模拟效果较好,大多数NSE值分布在0.71~0.96之间,RMSE值均在0.05~0.45 m之间,整体精度较高;ARIMA模型对气象数据的预测精度较高,蒸发数据的预测效果优于降水;结合ARIMA模型与GMS模型的研究方法在精度和适用性上表现良好,为区域地下水资源管理提供了科学依据。研究提出的方法克服了传统模型对未来数据依赖性强的局限性,可为类似区域预测地下水水位提供参考。 展开更多
关键词 地下水水位 降水与蒸发数据 时间序列分析arima方法 GMS 洋河流域
在线阅读 下载PDF
基于EMD-ARIMA-LSTM的风速预测方法
5
作者 崔胜秋 郜伊明 +5 位作者 霍家豪 董子阳 吕方 白瑞琪 周家睦 高波 《科技创新与应用》 2025年第5期50-53,共4页
风速预测在风力发电中的准确性至关重要。为提高预测精度,该文提出一种基于EMD-ARIMA-LSTM组合模型的风速预测方法。首先,采用经验模态分解(EMD)技术对风速时间序列进行处理,并计算其固有模态分量的样本熵值。然后,分别利用长短期记忆... 风速预测在风力发电中的准确性至关重要。为提高预测精度,该文提出一种基于EMD-ARIMA-LSTM组合模型的风速预测方法。首先,采用经验模态分解(EMD)技术对风速时间序列进行处理,并计算其固有模态分量的样本熵值。然后,分别利用长短期记忆神经网络(LSTM)和差分整合移动平均自回归模型(ARIMA)对高熵和低熵的分量序列进行建模预测。实验结果表明,所提组合模型相比单独使用EMD-ARIMA或EMD-LSTM模型,具有显著的预测优势,其均方根误差(RMSE)和平均绝对百分比误差(MAPE)大幅降低,R-squared评价指标达到98.21%,展示了较高的预测精度。 展开更多
关键词 风速预测 EMD LSTM arima 样本熵
在线阅读 下载PDF
基于ARIMA的风电发电量预测
6
作者 刘吉雄 邹瑞 许思为 《现代信息科技》 2025年第4期157-161,166,共6页
风能作为一种可再生清洁能源,得到了高速发展。高精度的风力发电量预测可为电力调度以及平抑并网波动提供重要依据。文章基于ARIMA模型,分别进行超短期、短期和中长期风力发电量预测,探讨其可行性和有效性。使用某风电场2019年1月1日至2... 风能作为一种可再生清洁能源,得到了高速发展。高精度的风力发电量预测可为电力调度以及平抑并网波动提供重要依据。文章基于ARIMA模型,分别进行超短期、短期和中长期风力发电量预测,探讨其可行性和有效性。使用某风电场2019年1月1日至2020年12月31日的风电功率数据进行建模,并开展不同时间长度的预测。在此基础上,考虑数据的周期性特征以及实际气候因素对发电功率的影响,优化模型的预测效果。实验结果表明,考虑数据周期性与外生变量的影响能够显著提升对实际功率的预测精度。超短期、短期和中长期预测的均方根误差分别为7.16、12.63和17.98。 展开更多
关键词 风力发电 发电量预测 arima 皮尔逊系数
在线阅读 下载PDF
基于ARIMA-SVR模型的轨道交通车辆关键设备检修偶换件数量预测
7
作者 王玥龙 刘鹏 姚伟君 《城市轨道交通研究》 北大核心 2025年第3期246-251,共6页
[目的]准确预测轨道交通车辆关键设备检修偶换件数量,可为科学的备件管理提供依据,提高检修经济性。但是现有预测方法准确性不足,预测效果差,因此有必要针对检修偶换件数量预测问题进行深入研究。[方法]根据轨道交通车辆设备检修偶换件... [目的]准确预测轨道交通车辆关键设备检修偶换件数量,可为科学的备件管理提供依据,提高检修经济性。但是现有预测方法准确性不足,预测效果差,因此有必要针对检修偶换件数量预测问题进行深入研究。[方法]根据轨道交通车辆设备检修偶换件数据的特性,构建了检修偶换率(即偶换件更换比例)和检修量的月度时间序列。通过深入研究时间序列预测算法,并对比各类预测算法的效果,综合考虑准确性与泛化能力,提出了一种结合ARIMA(自回归综合移动平均法)与SVR(支持向量回归算法)的计算方法。首先利用ARIMA进行偶换率的预测,然后运用SVR进行检修量的预测,最后结合偶换率与检修量的预测结果来计算偶换件的预测数量。此外,还结合了ARIMA预测的置信区间与无监督聚类IForest(孤立森林)算法,提出了一种偶换率异常检测方法。[结果及结论]以高度阀和制动夹钳单元这两种典型产品的高级修数据为例,对所提出的预测方法进行了验证计算。结果表明,与现有的历史平均法相比,该方法的预测准确性得到了显著提升,并且能够有效地检测出历史和当前的检修偶换率异常情况。 展开更多
关键词 轨道交通车辆 偶换件 自回归综合移动平均法 支持向量回归算法 孤立森林
在线阅读 下载PDF
基于ARIMA和XGBoost方法的快消品行业需求预测分析
8
作者 张宸奕 《消费电子》 2025年第6期203-205,共3页
本研究旨在探讨和比较两种方法在快消品行业需求预测中的应用:ARIMA(自回归积分滑动平均模型)和XGBoost(基于梯度提升的机器学习算法)。快消品行业因其产品的高流通速度和广泛的市场需求而面临独特的供应链管理和库存控制挑战。为此,该... 本研究旨在探讨和比较两种方法在快消品行业需求预测中的应用:ARIMA(自回归积分滑动平均模型)和XGBoost(基于梯度提升的机器学习算法)。快消品行业因其产品的高流通速度和广泛的市场需求而面临独特的供应链管理和库存控制挑战。为此,该行业需要采取措施以优化生产计划,降低库存成本,提高市场反应速度,提升需求预测准确性等。本研究通过分析快消品行业的需求特性,评估上述两种预测方法的准确性和适用性,并探讨如何结合这些方法的优势以提高预测准确性。研究结果表明,这些先进的预测技术能够有效应对市场的快速变化和不确定性,为快消品行业的需求管理提供科学依据。 展开更多
关键词 快消品行业 需求预测 arima模型 XGBoost算法
在线阅读 下载PDF
基于ARIMA模型的A股上市公司自由现金流预测——以南京新百为例
9
作者 杨静静 《现代营销(下)》 2025年第2期40-42,共3页
本文以南京新百公司的财务状况为研究案例,利用ARIMA模型对A股上市公司的自由现金流进行合理预测,以衡量A股上市公司的企业发展状况。研究过程包括平稳性检验、平稳化处理、白噪声处理等自由现金流模型数据预处理,参数定阶和参数优化的... 本文以南京新百公司的财务状况为研究案例,利用ARIMA模型对A股上市公司的自由现金流进行合理预测,以衡量A股上市公司的企业发展状况。研究过程包括平稳性检验、平稳化处理、白噪声处理等自由现金流模型数据预处理,参数定阶和参数优化的模型拟合处理,以及模型的预测和评价。结果表明,基于ARIMA模型预测A股上市公司的自由现金流的相对误差能够控制在统计学的范围内。 展开更多
关键词 arima模型 A股上市公司 自由现金流 预测研究
在线阅读 下载PDF
基于ARIMA模型的泸州市物流需求预测
10
作者 李昊 葛炬 苏童 《中国储运》 2025年第1期167-168,共2页
在地方城市,物流需求预测对于优化物流资源配置,提高物流效率,降低物流成本具有重要的意义。本文旨在研究和预测泸州市的物流需求。首先分析了泸州市的经济发展状况和物流行业的现状。然后选择并建立了适合泸州市物流需求预测的模型。... 在地方城市,物流需求预测对于优化物流资源配置,提高物流效率,降低物流成本具有重要的意义。本文旨在研究和预测泸州市的物流需求。首先分析了泸州市的经济发展状况和物流行业的现状。然后选择并建立了适合泸州市物流需求预测的模型。通过收集和处理相关数据,运用该模型进行了物流需求预测,并对预测结果进行了分析。最后根据预测结果,为泸州市的物流行业发展提出了一些具有针对性的建议。 展开更多
关键词 物流需求预测 物流行业 物流效率 经济发展状况 arima模型 物流资源配置 降低物流成本 收集和处理
在线阅读 下载PDF
基于ARIMA模型的黄土高原河谷城市生态足迹动态模拟及测算——以甘肃省兰州市为例 被引量:2
11
作者 虞文宝 《资源与产业》 2024年第1期133-140,共8页
为了从经济发展的角度探究生态足迹动态变化的成因,论文在测算黄土高原河谷城市——甘肃省兰州市2002—2014年人均生态足迹的发展轨迹的基础上,引入ARIMA模型,模拟预测了该市2015—2020年生态足迹变化趋势。研究结果显示:1)2002—2014年... 为了从经济发展的角度探究生态足迹动态变化的成因,论文在测算黄土高原河谷城市——甘肃省兰州市2002—2014年人均生态足迹的发展轨迹的基础上,引入ARIMA模型,模拟预测了该市2015—2020年生态足迹变化趋势。研究结果显示:1)2002—2014年,甘肃省兰州市人均生态足迹总体呈现上升态势,数值由2.70 hm^(2)增长至4.25 hm^(2),增幅达到1.57倍;2)从生态足迹增速看,2002—2014年人均生态足迹平均增速达到4.04%,同一时期兰州市地区生产总值平均增速为11.88%,较人均生态足迹增速高出7.84%,表明该地区经济发展的速度高于资源环境消耗的速度;3)2015—2020年甘肃省兰州市人均生态足迹仍然呈现上升态势,预测值分别达到4.48 hm^(2)、4.61 hm^(2)、4.75 hm^(2)、4.89 hm^(2)、5.02 hm^(2)和5.17 hm^(2),甘肃省兰州市生态赤字逐年增大,总生态足迹是城市土地利用总面积的19.59倍,说明经济发展与地区生态需求呈现较强正相关性,环境库兹涅茨曲线“拐点”并未出现,处于不可持续发展状态。基于以上分析结果提出了甘肃省兰州市降低生态足迹的具体路径:1)实施产业结构调整,降低生态赤字,提升经济发展质量和可持续发展能力;2)推动绿色发展,构建生态类型多样、布局合理、功能完善的自然生态系统和城乡一体的生态网络,提高生态环境容量。 展开更多
关键词 黄土高原 河谷城市 arima模型 生态足迹 动态模拟
在线阅读 下载PDF
基于小波分解和ARIMA-GARCH-GRU组合模型的制造业PMI预测 被引量:1
12
作者 陆文星 任环宇 +1 位作者 梁昌勇 李克卿 《工业工程》 2024年第1期86-95,127,共11页
制造业采购经理人指数(PMI)是反映国家经济运行情况的重要指标,而传统预测模型对该类时序数据预测精度不高。针对制造业PMI指数的非线性、波动性和数据量少的特点,提出一种基于一维离散小波变换进行数据预处理的组合模型。时序数据经过... 制造业采购经理人指数(PMI)是反映国家经济运行情况的重要指标,而传统预测模型对该类时序数据预测精度不高。针对制造业PMI指数的非线性、波动性和数据量少的特点,提出一种基于一维离散小波变换进行数据预处理的组合模型。时序数据经过小波变换,由整合移动平均自回归–广义自回归条件异方差模型(ARIMA-GARCH)处理稳态低频数据,门控循环单元(GRU)处理波动性强的高频数据,将各频段预测结果进行融合得到最终预测结果。为验证模型有效性,选取一定数据量的PMI指数进行实验。结果表明,与其他常见模型对比,本文构建的组合模型具有较好的预测精度与性能,平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)分别达到0.00329、0.004162、0.65%。 展开更多
关键词 采购经理人指数(PMI) 小波分解 整合移动平均自回归模型(arima) 广义的自回归条件异方差模型(GARCH) 门控循环单元(GRU)
在线阅读 下载PDF
基于NAR-ARIMA组合模型的高速公路沥青路面破损状况预测
13
作者 李海莲 高雅丽 +1 位作者 江晶晶 司金忠 《大连理工大学学报》 CAS CSCD 北大核心 2024年第3期307-313,共7页
基于NAR神经网络模型和ARIMA传统时间序列预测模型,对高速公路沥青路面的破损状况进行预测,再分别通过最优加权法和残差优化法对两种预测模型进行组合,得到两种组合模型.对各单一模型和组合模型的精度和稳定性进行了比较分析.实例分析表... 基于NAR神经网络模型和ARIMA传统时间序列预测模型,对高速公路沥青路面的破损状况进行预测,再分别通过最优加权法和残差优化法对两种预测模型进行组合,得到两种组合模型.对各单一模型和组合模型的精度和稳定性进行了比较分析.实例分析表明,组合模型相较于单一模型的精度和稳定性均有所提升,NAR-ARIMA最优加权组合模型预测效果最佳.该组合模型所需样本量较小,且基于时间序列.由于采用历史数据作为影响因素代替指标,该组合模型计算速度快、精度高,适用于日常的预测工作,为后续合理的道路养护决策提供了重要的理论依据. 展开更多
关键词 道路工程 路面破损状况预测 arima模型 NAR神经网络模型 沥青路面
在线阅读 下载PDF
改进GM(1,1)-ARIMA-LR模型天然气产量预测研究 被引量:2
14
作者 林文辉 杜彦炜 赵鹏 《西安工业大学学报》 CAS 2024年第1期32-40,共9页
为提高天然气产量在少样本情形下预测的准确性,基于对过去的预测误差进行学习的思想,加入自适应学习因子和组合学习因子以改进模型,构建包含GM(1,1)、ARIMA和LR的集成预测模型。该模型以平均误差百分比为评价指标,依据预测步长变化和过... 为提高天然气产量在少样本情形下预测的准确性,基于对过去的预测误差进行学习的思想,加入自适应学习因子和组合学习因子以改进模型,构建包含GM(1,1)、ARIMA和LR的集成预测模型。该模型以平均误差百分比为评价指标,依据预测步长变化和过去预测误差对单个模型分别进行动态调整,再建立目标规划模型对各模型进行动态加权。实证结果表明,改进GM(1,1)-ARIMA-LR模型能够更好地提取时间序列的长短时依赖关系,与其它的主流模型相比,其预测精度更高。对近5年的天然气产量进行一步、五步与八步预测,GM(1,1)-ARIMA-LR集成模型预测误差分别为1.187%、3.129%、9.855%。本文运用该模型对2023-2030年中国天然气产量进行预测。 展开更多
关键词 天然气产量 arima模型 灰色GM(1 1)模型 线性回归 多步预测
在线阅读 下载PDF
融合ARIMA模型和MCMC方法的非一致性设计洪水计算
15
作者 董立俊 董晓华 +3 位作者 马耀明 魏冲 喻丹 薄会娟 《水资源与水工程学报》 CSCD 北大核心 2024年第2期1-11,20,共12页
常规非一致性频率分析方法在选择协变量、建立统计参数与协变量的函数关系方面均存在主观性,且仅获得设计洪水估计值,不能同时进行不确定性分析。为改进上述不足,建立了ARIMA-MCMC模型,在贝叶斯MCMC方法抽样过程中考虑统计参数拟合期内... 常规非一致性频率分析方法在选择协变量、建立统计参数与协变量的函数关系方面均存在主观性,且仅获得设计洪水估计值,不能同时进行不确定性分析。为改进上述不足,建立了ARIMA-MCMC模型,在贝叶斯MCMC方法抽样过程中考虑统计参数拟合期内的时变性,进而对未来气候变化条件下的非一致性设计洪水频率分布模型参数进行抽样,基于参数后验分布进行设计洪水计算,并推求相应的置信区间。选取雅砻江流域小得石水文站作为分析对象,采用ARIMA-MCMC模型定量评估未来气候变化条件下小得石站设计洪水的变化情况。结果表明:基于ARIMA-MCMC方法的参数抽样收敛效果较好,3种情景下的模型统计量D均小于显著水平5%的临界值;除SSP2-4.5情景下P=0.1%和P=0.05%的设计值外,其他情况的设计最大日流量较历史期均明显增加,其中SSP1-2.6、SSP5-8.5情景下的增幅分别为7.1%~10.5%、13.9%~27.2%。本文建立的ARIMA-MCMC方法能够有效进行非一致性设计洪水频率分析。 展开更多
关键词 设计洪水 arima模型 贝叶斯MCMC方法 非一致性 不确定性 洪水频率分析
在线阅读 下载PDF
基于ARIMA-LSTM混合模型对传染病的预测分析 被引量:3
16
作者 王瑞 李瑞沂 +2 位作者 曹沛根 冯和棠 黄猛 《现代信息科技》 2024年第1期116-120,共5页
传染病一直是科学研究的热点,利用科学的方法控制传染病的传播对整个国家乃至全世界具有举足轻重的作用。文章选取乙类传染病中新型冠状病毒感染数据作为研究对象,搜集了北京市2022年1月至2022年4月新冠感染累计确诊病例数,构成时间序列... 传染病一直是科学研究的热点,利用科学的方法控制传染病的传播对整个国家乃至全世界具有举足轻重的作用。文章选取乙类传染病中新型冠状病毒感染数据作为研究对象,搜集了北京市2022年1月至2022年4月新冠感染累计确诊病例数,构成时间序列,基于自回归移动平均模型(ARIMA)和长短期记忆神经网络(LSTM)的混合模型进行预测分析。结果表明,混合模型的预测结果与实际情况基本一致。 展开更多
关键词 时间序列 arima模型 LSTM模型 组合预测模型
在线阅读 下载PDF
基于ARIMA与GM(1,1)模型的公立医院互联网门诊人次预测研究 被引量:3
17
作者 徐彦杰 辛亮 +4 位作者 刘俊卿 李岩 李世云 王若臻 董恒磊 《现代医院》 2024年第1期14-19,共6页
目的了解公立医院互联网门诊人次的变化趋势,为互联网医院的发展规划提供支持。方法利用某公立医院2021年1月—2023年6月互联网门诊人次数据,分别构建ARIMA模型和GM(1,1)模型,采用平均绝对误差(MAE)和均方根误差(RMSE)评价拟合效果,基... 目的了解公立医院互联网门诊人次的变化趋势,为互联网医院的发展规划提供支持。方法利用某公立医院2021年1月—2023年6月互联网门诊人次数据,分别构建ARIMA模型和GM(1,1)模型,采用平均绝对误差(MAE)和均方根误差(RMSE)评价拟合效果,基于优势模型预测2023年7—12月互联网门诊人次。结果通过ARIMA(1,2,1)模型和GM(1,1)模型对互联网门诊的复诊人次进行预测,平均绝对误差分别为369.86和978.84,均方根误差分别为479.49和1444.83;通过ARIMA(0,1,0)模型和GM(1,1)对互联网门诊咨询人次进行预测,平均绝对误差分别为297.23和369.62,均方根误差分别为413.61和496.30,表明ARIMA模型的预测效果较好。预测结果显示,2023年12月互联网门诊的复诊人次预测值为14831例,咨询人次预测值为7461例。结论2021—2023年某公立医院互联网门诊人次呈持续上升趋势。因此,医院应充分认识到互联网医疗服务的重要性,积极采取措施,不断优化医疗服务模式,为患者提供优质、高效、便捷的互联网医疗服务。 展开更多
关键词 arima GM(1 1) 互联网 门诊人次 预测研究
在线阅读 下载PDF
基于ARIMA和GM(1,1)模型的互联网肿瘤专科门诊接诊现状预测研究 被引量:2
18
作者 徐彦杰 辛亮 +4 位作者 刘俊卿 李岩 李世云 王若臻 董恒磊 《现代医院》 2024年第2期275-279,共5页
目的充分了解互联网肿瘤门诊接诊现状的变化趋势,为互联网医院的发展及管理提供支持。方法利用某肿瘤专科医院2021年1月—2023年6月互联网门诊接诊数据,分别构建ARIMA和GM(1,1)模型,采用平均绝对误差(MAE)和均方根误差(RMSE)评价拟合效... 目的充分了解互联网肿瘤门诊接诊现状的变化趋势,为互联网医院的发展及管理提供支持。方法利用某肿瘤专科医院2021年1月—2023年6月互联网门诊接诊数据,分别构建ARIMA和GM(1,1)模型,采用平均绝对误差(MAE)和均方根误差(RMSE)评价拟合效果,基于优势模型预测2023年7—12月互联网门诊接诊比例及互联网门诊人次占线下门诊比例。结果通过ARIMA(1,1,2)和GM(1,1)模型对互联网门诊接诊比例进行预测,平均绝对误差分别为2.06%和2.41%,均方根误差分别为3.01%和3.17%;通过ARIMA(0,1,1)和GM(1,1)模型对互联网门诊人次占线下门诊比例进行预测,平均绝对误差分别为0.58%和1.08%,均方根误差分别为0.75%和1.31%,表明ARIMA模型的预测效果更好。预测结果显示,2023年12月互联网门诊接诊比例预测值为90.35%,互联网门诊人次占线下门诊比例预测值为16.46%。结论2021—2023年某肿瘤专科医院互联网接诊比例呈现持续稳定趋势,互联网门诊人次占线下门诊比例呈现持续上升的趋势。因此,医院需建立持续的监测机制,不断调整管理策略和措施,以满足患者的需求,持续推动互联网医疗服务高质量发展。 展开更多
关键词 arima GM(1 1) 互联网 接诊现状 预测研究
在线阅读 下载PDF
基于ARIMA-PSO-LSTM的太阳能预测 被引量:1
19
作者 沈露露 黄晋浩 +1 位作者 花敏 周雯 《无线电通信技术》 北大核心 2024年第4期771-778,共8页
太阳能是新兴的可再生能源之一,可将其转化为电能以供无线传感器网络(Wireless Sensor Networks, WSN)使用,对太阳能进行预测可以有效地利用能量,从而达到节省能源、维持网络持续稳定运行的目的。提出了一种新的组合预测模型来预测太阳... 太阳能是新兴的可再生能源之一,可将其转化为电能以供无线传感器网络(Wireless Sensor Networks, WSN)使用,对太阳能进行预测可以有效地利用能量,从而达到节省能源、维持网络持续稳定运行的目的。提出了一种新的组合预测模型来预测太阳能辐照强度,其中改进的粒子群优化(Particle Swarm Optimization, PSO)算法被引入寻找长短期记忆(Long Short Term Memory, LSTM)神经网络模型的最优参数。选取自回归差分移动平均(Auto-Regressive Integrated Moving Average, ARIMA)模型来预测太阳辐照数据中的线性分量;采用PSO算法来优化LSTM神经网络模型的超参数,有助于提高模型预测的精度和鲁棒性;采用优化的LSTM神经网络模型来预测数据中的非线性分量;最后将两个模型的预测结果进行叠加。实验结果表明,新的组合模型比ARIMA、LSTM等模型,具有更高的预测精度。 展开更多
关键词 自回归差分移动平均模型 长短期记忆神经网络模型 粒子群优化算法 能量预测算法
在线阅读 下载PDF
ARIMA模型在非居民用水基准额度预测中的应用 被引量:1
20
作者 韦慧 《水利发展研究》 2024年第12期124-129,共6页
随着城镇化步伐的持续加速,水资源匮乏问题愈发严峻,加强对水资源消耗主体,特别是非居民用水大户,如工业与服务业单位的用水规划与管理,成为推动城市节水战略、平衡水资源供需关系的关键环节。非居民用水规划管理的一大挑战,在于确立科... 随着城镇化步伐的持续加速,水资源匮乏问题愈发严峻,加强对水资源消耗主体,特别是非居民用水大户,如工业与服务业单位的用水规划与管理,成为推动城市节水战略、平衡水资源供需关系的关键环节。非居民用水规划管理的一大挑战,在于确立科学合理的用水基准额度。文章聚焦于上海市非居民领域的用水情况,运用ARIMA时间序列分析模型,分别针对单一用户与不同行业进行用水量预测。结果表明,相较于传统的加权平均方法,ARIMA模型在预测精度上具有显著优势,能够为精准预测和调控非居民用水基准额度提供有力支撑。 展开更多
关键词 用水基准额度 arima模型 加权平均 节水 节水优先
在线阅读 下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部