Narrow backfill earth pressure estimation is applied to study the stability of supporting structures in the vicinity of existing buildings.Previous narrow backfill earth pressure studies have neglected seismic-unsatur...Narrow backfill earth pressure estimation is applied to study the stability of supporting structures in the vicinity of existing buildings.Previous narrow backfill earth pressure studies have neglected seismic-unsaturated seepage multi-field coupling,resulting in inaccurate estimates.To address these deficiencies,this paper proposed a calculation method for seismic passive earth pressure in unsaturated narrow backfill,based on inclined thin-layer units.It considers the interlayer shear stress,arching effect,and the multi-field coupling of seismic-unsaturated seepage.Additionally,this paper includes a parametric sensitivity analysis.The outcomes indicate that the earthquake passive ground pressure of unsaturated narrow backfill can be reduced by increasing the aspect ratio,seismic acceleration coefficient,and unsaturation parameterα.It can also be reduced by decreasing the effective interior friction angle,soil cohesion,wallearth friction angle,and vertical discharge.Furthermore,for any width soil,lowering the elevation of the action point of passive thrust can be attained by raising the effective interior friction angle,wall-earth friction angle,and unsaturation parameterα.Reducing soil cohesion,seismic acceleration coefficient,and vertical discharge can also lower the height of the application point of passive thrust.展开更多
To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement a...To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement and shear strain during the active failure of soil with height H and friction angle φ. The test results show that there are 3 stages of soil deformation under retaining wall translation: the initial stage, the expansion stage and the stability stage. The stable sliding surface in the model tests can be considered to be composed of two parts. Within the height range of 0.82 H-1.0 H, it is a plane at an angle of π/4+φ/2 to the horizontal plane. In the height range of 0-0.82 H, it is a curve between a logarithmic spiral and a plane at an angle of π/4+φ/2 to the horizontal. A new method applicable to any sliding surface is proposed for active earth pressure with the consideration of arching effect. The active earth pressure is computed with the actual shape of the slip surface and compared with model test data and with predictions obtained by existing methods. The comparison shows that predictions from the newly proposed method are more consistent with the measured data than the predictions from the other methods.展开更多
To discuss the soil arching effect on the load transferring model and sharing ratios by the piles and inter-pile subsoil in the bidirectionally reinforced composite ground, the forming mechanism, mechanical behavior a...To discuss the soil arching effect on the load transferring model and sharing ratios by the piles and inter-pile subsoil in the bidirectionally reinforced composite ground, the forming mechanism, mechanical behavior and its effect factors were discussed in detail. Then, the unified strength theory was introduced to set up the elastoplastic equilibrium differential equation of the subsoil under the limit equilibrium state. And from the equation, the solutions were derived with the corresponding formulas presented to calculate the earth pressure over and beneath the horizontal reinforced cushion or pillow, the stress of inter-pile subsoil and the pile-soil stress ratio. Based on the obtained solutions and measured data from an engineering project, the influence rules by the soil property parameters (i.e., the cohesion c and internal friction angle φ) and pile spacing on the pile-soil stress ratio n were discussed respectively. The results show that to improve the load sharing ratio by the piles, the more effective means for filling materials with a larger value of φ is to increase the ratio of pile cap size to spacing, while to reduce the pile spacing properly and increase the value of cohesion c is advisable for those filling materials with a smaller value of φ.展开更多
In piled and geosynthetic-reinforced(PGR) embankment, the arching behavior determines the overburden load on piles and subsoils. Placement of geosynthetic is effective in reducing the relative displacement between pil...In piled and geosynthetic-reinforced(PGR) embankment, the arching behavior determines the overburden load on piles and subsoils. Placement of geosynthetic is effective in reducing the relative displacement between pile and subsoil. When the mobilized shear stress is less than the shear strength, partially developed arching will occur. Consequently, existing analytical methods, adopting the ultimate shear strength failure criterion, need to be improved. This study developed a simplified 2 D analytical method, which is based on the developing arching effect, to evaluate the load redistribution of the PGR embankment. Then, the influences of embankment height and internal friction angle, subsoil depth, ratio of pile cap width to pile clear spacing(RPC) and geosynthetic tensile stiffness on the critical height ratio, stress concentration ratio, soil arching ratio, geosynthetic tension and axial strain were investigated. This study suggests that a RPC of 1:1.0 and a one-way of single-layer geosynthetic tensile stiffness of 2000 kN/m should be considered as the sensitivity thresholds for the PGR embankment.展开更多
基金Project(42277175)supported by the National Natural Science Foundation of ChinaProject(NRMSSHR-2022-Z08)supported by the Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region,Ministry of Natural Resources,China。
文摘Narrow backfill earth pressure estimation is applied to study the stability of supporting structures in the vicinity of existing buildings.Previous narrow backfill earth pressure studies have neglected seismic-unsaturated seepage multi-field coupling,resulting in inaccurate estimates.To address these deficiencies,this paper proposed a calculation method for seismic passive earth pressure in unsaturated narrow backfill,based on inclined thin-layer units.It considers the interlayer shear stress,arching effect,and the multi-field coupling of seismic-unsaturated seepage.Additionally,this paper includes a parametric sensitivity analysis.The outcomes indicate that the earthquake passive ground pressure of unsaturated narrow backfill can be reduced by increasing the aspect ratio,seismic acceleration coefficient,and unsaturation parameterα.It can also be reduced by decreasing the effective interior friction angle,soil cohesion,wallearth friction angle,and vertical discharge.Furthermore,for any width soil,lowering the elevation of the action point of passive thrust can be attained by raising the effective interior friction angle,wall-earth friction angle,and unsaturation parameterα.Reducing soil cohesion,seismic acceleration coefficient,and vertical discharge can also lower the height of the application point of passive thrust.
基金Projects(51978084, 51678073) supported by the National Natural Science Foundation of ChinaProject(2020JJ4605) supported by the Natural Science Foundation of Hunan Province, ChinaProject(2019IC13) supported by the International Cooperation and Development Project of Double First-Class Scientific Research in Changsha University of Science & Technology, China。
文摘To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement and shear strain during the active failure of soil with height H and friction angle φ. The test results show that there are 3 stages of soil deformation under retaining wall translation: the initial stage, the expansion stage and the stability stage. The stable sliding surface in the model tests can be considered to be composed of two parts. Within the height range of 0.82 H-1.0 H, it is a plane at an angle of π/4+φ/2 to the horizontal plane. In the height range of 0-0.82 H, it is a curve between a logarithmic spiral and a plane at an angle of π/4+φ/2 to the horizontal. A new method applicable to any sliding surface is proposed for active earth pressure with the consideration of arching effect. The active earth pressure is computed with the actual shape of the slip surface and compared with model test data and with predictions obtained by existing methods. The comparison shows that predictions from the newly proposed method are more consistent with the measured data than the predictions from the other methods.
基金Project (07JJ4015) supported by the Natural Science Foundation of Hunan Province, China
文摘To discuss the soil arching effect on the load transferring model and sharing ratios by the piles and inter-pile subsoil in the bidirectionally reinforced composite ground, the forming mechanism, mechanical behavior and its effect factors were discussed in detail. Then, the unified strength theory was introduced to set up the elastoplastic equilibrium differential equation of the subsoil under the limit equilibrium state. And from the equation, the solutions were derived with the corresponding formulas presented to calculate the earth pressure over and beneath the horizontal reinforced cushion or pillow, the stress of inter-pile subsoil and the pile-soil stress ratio. Based on the obtained solutions and measured data from an engineering project, the influence rules by the soil property parameters (i.e., the cohesion c and internal friction angle φ) and pile spacing on the pile-soil stress ratio n were discussed respectively. The results show that to improve the load sharing ratio by the piles, the more effective means for filling materials with a larger value of φ is to increase the ratio of pile cap size to spacing, while to reduce the pile spacing properly and increase the value of cohesion c is advisable for those filling materials with a smaller value of φ.
基金Project(51508279) supported by the National Natural Science Foundation of ChinaProject(KFJ170104) supported by the Open Fund of National Engineering Laboratory of Highway Maintenance Technology of Changsha University of Science & Technology, China+1 种基金Project(BK20150885) supported by the Jiangsu Provincial Natural Science Fund, ChinaProject(2019003) supported by the Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering of Hohai University, China。
文摘In piled and geosynthetic-reinforced(PGR) embankment, the arching behavior determines the overburden load on piles and subsoils. Placement of geosynthetic is effective in reducing the relative displacement between pile and subsoil. When the mobilized shear stress is less than the shear strength, partially developed arching will occur. Consequently, existing analytical methods, adopting the ultimate shear strength failure criterion, need to be improved. This study developed a simplified 2 D analytical method, which is based on the developing arching effect, to evaluate the load redistribution of the PGR embankment. Then, the influences of embankment height and internal friction angle, subsoil depth, ratio of pile cap width to pile clear spacing(RPC) and geosynthetic tensile stiffness on the critical height ratio, stress concentration ratio, soil arching ratio, geosynthetic tension and axial strain were investigated. This study suggests that a RPC of 1:1.0 and a one-way of single-layer geosynthetic tensile stiffness of 2000 kN/m should be considered as the sensitivity thresholds for the PGR embankment.