Addressing the issues of significant entry settlement and severe mining pressure manifestations in the conventional 121 approach,an innovative N00 approach is proposed.By comparing the mining process and entry formati...Addressing the issues of significant entry settlement and severe mining pressure manifestations in the conventional 121 approach,an innovative N00 approach is proposed.By comparing the mining process and entry formation process of different approaches,the characteristics of entry roof settlement evolution under different approaches are obtained.The N00 approach,which incorporates roof cutting and NPR cable support,optimizes the mining and entry formation process to reduce the settlement phase of entry roof,decreases the settlement of entry roof,and enhances the steadiness of entry roof.The N00 approach modifies the entry roof structure through roof cutting and establishes a hydraulic support load mechanics model for the mining panel to derive the theoretical load pressure formula for the N00 approach’s hydraulic support.Compared with the conventional 121 approach,the pressure on the N00 approach’s hydraulic support is reduced.Empirical data obtained through field monitoring demonstrate that the N00 approach has reduced the roof settlement of the entry and weakened the mining pressure manifestation at the mining panel,achieving the goal of protecting the entry and mining panel.展开更多
In this paper,the isogeometric analysis(IGA)method is employed to analyze the oscillation characteristics of functionally graded triply periodic minimal surface(FG-TPMS)curved-doubly shells integrated with magneto-ele...In this paper,the isogeometric analysis(IGA)method is employed to analyze the oscillation characteristics of functionally graded triply periodic minimal surface(FG-TPMS)curved-doubly shells integrated with magneto-electric surface layers(referred to as"FG-TPMS-MEE curved-doubly shells")subjected to low-velocity impact loads.This study presents low-velocity impact load model based on a single springmass(S-M)approach.The FG-TPMS-MEE curved-doubly shells are covered with two magneto-electric surface layers,while the core layer consists of three types:I-graph and Wrapped Package-graph(IWP),Gyroid(G),and Primitive(P),with various graded functions.These types are notable for their exceptional stiffness-to-weight ratios,enabling a wide range of potential applications.The Maxwell equations and electromagnetic boundary conditions are applied to compute the change in electric potentials and magnetic potentials.The equilibrium equations of the shell are derived from a refined higher-order shear deformation theory(HSDT),and the transient responses of the FG-TPMS-MEE curveddoubly shells are subsequently determined using Newmark's direct integration method.These results have applications in structural vibration control and the analysis of structures subjected to impact or explosive loads.Furthermore,this study provides a theoretical prediction of the low-velocity impact load and magneto-electric-elastic effects on the free vibration and transient response of FG-TPMS-MEE curved-doubly shells.展开更多
For the first time, the isogeometric analysis(IGA) approach is used to model and analyze free and forced vibrations of doubly-curved magneto-electro-elastic(MEE) composite shallow shell resting on the visco-Pasternak ...For the first time, the isogeometric analysis(IGA) approach is used to model and analyze free and forced vibrations of doubly-curved magneto-electro-elastic(MEE) composite shallow shell resting on the visco-Pasternak foundation in a hygro-temperature environment. The doubly-curved MEE shallow shell types include spherical shallow shell, cylindrical shallow shell, saddle shallow shell, and elliptical shallow shell subjected to blast load are investigated. The Maxwell equation and electromagnetic boundary conditions are used to determine the vary of the electric and magnetic potentials. The MEE shallow shell's equations of motion are derived from Hamilton's principle and refined higher-order shear theory. Then, the IGA method is used to derive the laws of natural frequencies and dynamic responses of the shell under various boundary conditions. The accuracy of the model and method is verified through reliable numerical comparisons. Aside from this, the impact of the input parameters on the free and forced vibration of the doubly-curved MEE shallow shell is examined in detail. These results may be useful in the design and manufacture of military structures such as warships, fighter aircraft, drones and missiles.展开更多
<Abstuact>Communicative approach in English language teaching(ELT) is frequently discussed and debated.It is believed by many linguists and teachers to be an effective methodtosolvesomeoftheteachingandlearningpr...<Abstuact>Communicative approach in English language teaching(ELT) is frequently discussed and debated.It is believed by many linguists and teachers to be an effective methodtosolvesomeoftheteachingandlearningproblems.Thispapergivesacomprehensiveaccountoftheapproach.ItpresentstheadvantagesofcommunicativeapproachintheteachingofEnglishlanguageandhowtoapplyitbymeansofclassroomactivities.ItsuggeststhatEnglishteachersshouldconductfurtherresearchtoremedytheshortcomingsinEnglishteaching.展开更多
A novel Lyapunov-based three-axis attitude intelligent control approach via allocation scheme is considered in the proposed research to deal with kinematics and dynamics regarding the unmanned aerial vehicle systems.T...A novel Lyapunov-based three-axis attitude intelligent control approach via allocation scheme is considered in the proposed research to deal with kinematics and dynamics regarding the unmanned aerial vehicle systems.There is a consensus among experts of this field that the new outcomes in the present complicated systems modeling and control are highly appreciated with respect to state-of-the-art.The control scheme presented here is organized in line with a new integration of the linear-nonlinear control approaches,as long as the angular velocities in the three axes of the system are accurately dealt with in the inner closed loop control.And the corresponding rotation angles are dealt with in the outer closed loop control.It should be noted that the linear control in the present outer loop is first designed through proportional based linear quadratic regulator(PD based LQR) approach under optimum coefficients,while the nonlinear control in the corresponding inner loop is then realized through Lyapunov-based approach in the presence of uncertainties and disturbances.In order to complete the inner closed loop control,there is a pulse-width pulse-frequency(PWPF) modulator to be able to handle on-off thrusters.Furthermore,the number of these on-off thrusters may be increased with respect to the investigated control efforts to provide the overall accurate performance of the system,where the control allocation scheme is realized in the proposed strategy.It may be shown that the dynamics and kinematics of the unmanned aerial vehicle systems have to be investigated through the quaternion matrix and its corresponding vector to avoid presenting singularity of the results.At the end,the investigated outcomes are presented in comparison with a number of potential benchmarks to verify the approach performance.展开更多
A novel hybrid robust three-axis attitude control approach, namely HRTAC, is considered along with the well-known developments in the area of space systems, since there is a consensus among the related experts that th...A novel hybrid robust three-axis attitude control approach, namely HRTAC, is considered along with the well-known developments in the area of space systems, since there is a consensus among the related experts that the new insights may be taken into account as decision points to outperform the available materials. It is to note that the traditional control approaches may generally be upgraded, as long as a number of modifications are made with respect to state-of-the-art, in order to propose high-precision outcomes. Regarding the investigated issues, the robust sliding mode finite-time control approach is first designed to handle three-axis angular rates in the inner control loop, which consists of the pulse width pulse frequency modulations in line with the control allocation scheme and the system dynamics. The main subject to employ these modulations that is realizing in association with the control allocation scheme is to be able to handle a class of overactuated systems, in particular. The proportional derivative based linear quadratic regulator approach is then designed to handle three-axis rotational angles in the outer control loop, which consists of the system kinematics that is correspondingly concentrated to deal with the quaternion based model. The utilization of the linear and its nonlinear terms, simultaneously, are taken into real consideration as the research motivation, while the performance results are of the significance as the improved version in comparison with the recent investigated outcomes. Subsequently, there is a stability analysis to verify and guarantee the closed loop system performance in coping with the whole of nominal referenced commands. At the end, the effectiveness of the approach considered here is highlighted in line with a number of potential recent benchmarks.展开更多
Background For the purpose of utilising hybrid vigour to produce possible hybrids with a suitable level of stability,the knowledge of gene activity and combining ability is a crucial prerequisite before choosing desir...Background For the purpose of utilising hybrid vigour to produce possible hybrids with a suitable level of stability,the knowledge of gene activity and combining ability is a crucial prerequisite before choosing desirable parents.The present study was carried out with six parents crossed in full diallel fashion and generated 30 F1 hybrids.These hybrids were evaluated in two replications in Randomized Block Design at Department of Cotton,TNAU for combining ability and gene action.Diallel analysis was carried out according to Griffing’s method-I(parents + F_(1) + reciprocals) and model-I and Hayman’s graphical approach by using INDOSTAT software.Results Analysis of variance for combining ability indicated that mean square values of GCA,SCA and reciprocals were highly significant for all the traits except for the uniformity index.RG763 and K12 showed highly positively significant GCA effects for most of the yield traits while PA838 and K12 for fibre quality traits,so they were found as best general combiners.PAIG379 × K12 and PDB29 × K12 for yield traits,and PDB29 × PA838,RG763 × PA838,and CNA1007 × RG763 cross combinations for fibre quality traits could be recommended for future breeding programms.Conclusion The results of both Griffing’s and Hayman’s approaches showed that non-additive gene action predominates as SCA variance was bigger than GCA variance,so heterosis breeding is thought to be a more fruitful option for enhancing GCA of many traits.展开更多
During recent years,some notions about tasks have been considered as the major part of analysis in different teaching approaches and teachers are being more interested in the use of taskbased approach both in foreign ...During recent years,some notions about tasks have been considered as the major part of analysis in different teaching approaches and teachers are being more interested in the use of taskbased approach both in foreign and in second language teaching.The main goal of this article is to introduce and discuss some major principles of task-based language teaching and indicates how teachers can apply them in their curriculum.展开更多
Using semi-tensor product of matrices, the controllability and stabilizability of finite automata are investigated. By expressing the states, inputs, and outputs in vector forms, the transition and output functions ar...Using semi-tensor product of matrices, the controllability and stabilizability of finite automata are investigated. By expressing the states, inputs, and outputs in vector forms, the transition and output functions are represented in matrix forms.Based on this algebraic description, a necessary and sufficient condition is proposed for checking whether a state is controllable to another one. By this condition, an algorithm is established to find all the control sequences of an arbitrary length. Moreover, the stabilizability of finite automata is considered, and a necessary and sufficient condition is presented to examine whether some states can be stabilized. Finally, the study of illustrative examples verifies the correctness of the presented results/algorithms.展开更多
Wave driven unmanned surface vehicle(WUSV) is a new concept ocean robot drived by wave energy and solar energy,and it is very suitable for the vast ocean observations with incomparable endurance.Its dynamic modeling i...Wave driven unmanned surface vehicle(WUSV) is a new concept ocean robot drived by wave energy and solar energy,and it is very suitable for the vast ocean observations with incomparable endurance.Its dynamic modeling is very important because it is the theoretical foundation for further study in the WUSV motion control and efficiency analysis.In this work,the multibody system of WUSV was described based on D-H approach.Then,the driving principle was analyzed and the dynamic model of WUSV in longitudinal profile is established by Lagrangian mechanics.Finally,the motion simulation of WUSV and comparative analysis are completed by setting different inputs of sea state.Simulation results show that the WUSV dynamic model can correctly reflect the WUSV longitudinal motion process,and the results are consistent with the wave theory.展开更多
Accidents and injuries related to work are major occupational health problems in most of the industrialized countries.Traditional approaches to manage workplace safety in mines have mainly focused on job redesign and ...Accidents and injuries related to work are major occupational health problems in most of the industrialized countries.Traditional approaches to manage workplace safety in mines have mainly focused on job redesign and technical aspects of engineering systems.It is being realized that compliance to rules and regulations of mines is a prerequisite;however,it is not sufficient to achieve further reduction in accident and injury rates in mines.Proactive approaches are necessary to further improve the safety standards in mines.Unsafe conditions and practices in mines lead to a number of accidents,which in turn may cause loss and injury to human lives,damages to property,and loss of production.Hazard identification and risk assessment is an important task for the mining industry which needs to consider all the risk factors at workplaces.Applications of risk management approaches in mines are necessary to identify and quantify potential hazards and to suggest effective solutions.In this paper,the following risk estimation techniques were discussed:(i)DGMS(Directorate General of Mines Safety,India)risk rating criterion,and(ii)a matrix based approach.The proposed tools were demonstrated through an application in an opencast coal mine in India.It was inferred that the risk assessment approach can be used as an effective tool to indentify and control hazards in mines.展开更多
Fracture toughness is very important when applying Damage Tolerance Design and Assessment Techniques. The traditional testing approach for obtaining fracture toughness values is costly and time consuming. In order to ...Fracture toughness is very important when applying Damage Tolerance Design and Assessment Techniques. The traditional testing approach for obtaining fracture toughness values is costly and time consuming. In order to estimate the fracture toughness of ductile metals, the fracture mechanics theory, materials plastic deformation theory and materials constructive relationships are employed here. A series of formulae and a theoretical approach are presented to calculate fracture toughness values of different materials in the plane stress and plane strain conditions. Compared with test results, evaluated values have a good agreement.展开更多
In order to analyze the effects of backfill materials, geometries and slab setting on the settlement of bridge approach embankment, scale model was built based on the structural characteristics of bridge approach emba...In order to analyze the effects of backfill materials, geometries and slab setting on the settlement of bridge approach embankment, scale model was built based on the structural characteristics of bridge approach embankment, and scale model tests were carried out under different conditions. The results show that when graded gravels were selected as the backfill materials, the effect of setting approach slab to reduce the differential settlement is more prominent. When lime soils were selected as the backfill material, approach slab can moderate the longitudinal settlement slope. When using different backfill materials, the ultimate settlement of the positive trapezoidal backfill geometries is less than that of the inverted trapezoid, and the backfill geometries have little effect on the settlement slope.展开更多
The missile autopilot for an interceptor with tail fins and pulse thrusters is designed via the θ-D approach. The nonlin- ear dynamic model of the pitch and yaw motion of the missile is transformed into a linear-like...The missile autopilot for an interceptor with tail fins and pulse thrusters is designed via the θ-D approach. The nonlin- ear dynamic model of the pitch and yaw motion of the missile is transformed into a linear-like structure with state-dependent coef- ficient (SDC) matrices. Based on the linear-like structure, a θ-D feedback controller is designed to steer the missile to track refer- ence acceleration commands. A sufficient condition that ensures the asymptotic stability of the tracking system is given based on Lyapunov's theorem. Numerical results show that the proposed autopilot achieves good tracking performance and the closed-loop tracking system is asymptotically stable.展开更多
The separation characteristic of raw coal from Luoyang mining area, China, was investigated by applying a dry coal beneficiation flowsheet with the dense medium gas-solid fluidized bed as main separating equipment. Th...The separation characteristic of raw coal from Luoyang mining area, China, was investigated by applying a dry coal beneficiation flowsheet with the dense medium gas-solid fluidized bed as main separating equipment. The experimental and simulation results indicate that the dense medium gas-solid fluidized bed can provide uniform distribution and stable fluctuation of bed densities at various heights. Two types of different separating approaches were compared using the dry coal beneficiation flowsheet. Compared with obtaining cleaning coal in the first stage of the flowsheet, a higher yield of the cleaning coal and better separation efficiency can be achieved when discharging gangue in the first stage. Finally, the results indicate that 64.86% pure cleaning coal with an ash content of 11.77% and 13.53% middlings were obtained, and 21.61% gangue was removed in two successive separation stages with the probable errors of 0.05 and 0.07 g/cm3, respectively.展开更多
Mechanical behaviors of granular materials are complicated and greatly influenced by the particle shape.Current,some composite approaches have been proposed for realistic particle shape modelling within discrete eleme...Mechanical behaviors of granular materials are complicated and greatly influenced by the particle shape.Current,some composite approaches have been proposed for realistic particle shape modelling within discrete element method(DEM),while they cannot give a good representation to the shape and mass properties of a real particle.In this work,a novel algorithm is developed to model an arbitrary particle using a cluster of non-overlapping disks.The algorithm mainly consists of two components:boundary filling and domain filling.In the boundary filling,some disks are placed along the boundary for a precise representation of the particle shape,and some more disks are placed in the domain to give an approximation to the mass properties of the particle in the domain filling.Besides,a simple method is proposed to correct the mass properties of a cluster after domain filling and reduce the number of the disks in a cluster for lower computational load.Moreover,it is another great merit of the algorithm that a cluster generated by the algorithm can be used to simulate the particle breakage because of no overlaps between the disks in a cluster.Finally,several examples are used to show the robust performance of the algorithm.A current FORTRAN version of the algorithm is available by contacting the author.展开更多
This work aims at selecting optimal operating variables to obtain the minimum specific energy(SE) in sawing of rocks.A particular granite was sampled and sawn by a fully automated circular diamond sawblades.The periph...This work aims at selecting optimal operating variables to obtain the minimum specific energy(SE) in sawing of rocks.A particular granite was sampled and sawn by a fully automated circular diamond sawblades.The peripheral speed,the traverse speed,the cut depth and the flow rate of cooling fluid were selected as the operating variables.Taguchi approach was adopted as a statistical design of experimental technique for optimization studies.The results were evaluated based on the analysis of variance and signal-to-noise ratio(S/N ratio).Statistically significant operating variables and their percentage contribution to the process were also determined.Additionally,a statistical model was developed to demonstrate the relationship between SE and operating variables using regression analysis and the model was then verified.It was found that the optimal combination of operating variables for minimum SE is the peripheral speed of 25 m/s,the traverse speed of 70 cm/min,the cut depth of 2 cm and the flow rate of cooling fluid of 100 mL/s.The cut depth and traverse speed were statistically determined as the significant operating variables affecting the SE,respectively.Furthermore,the regression model results reveal that the predictive model has a high applicability for practical applications.展开更多
In order to deal with modeling problem of a pressure balance system with time-delay, nonlinear, time-varying and uncertain characteristics, an intelligent modeling procedure is proposed, which is based on artificial n...In order to deal with modeling problem of a pressure balance system with time-delay, nonlinear, time-varying and uncertain characteristics, an intelligent modeling procedure is proposed, which is based on artificial neural network(ANN) and input-output data of the system during shield tunneling and can overcome the precision problem in mechanistic modeling(MM) approach. The computational results show that the training algorithm with Gauss-Newton optimization has fast convergent speed. The experimental investigation indicates that, compared with mechanistic modeling approach, intelligent modeling procedure can obviously increase the precision in both soil pressure fitting and forecasting period. The effectiveness and accuracy of proposed intelligent modeling procedure are verified in laboratory tests.展开更多
On the basis of analyzing the present conditions of country high school English teaching, this paper attempts to justify the feasibility of Cognitive Approach’s application to the country high school English teaching...On the basis of analyzing the present conditions of country high school English teaching, this paper attempts to justify the feasibility of Cognitive Approach’s application to the country high school English teaching and discusses its operation in detail.展开更多
基金Project(2022XDHZ12)supported by the Lvliang Technology Project,ChinaProjects(8232056,2232080)supported by the Beijing Natural Science Foundation,ChinaProject([2020]3008)supported by the Science and Technology Projects in Guizhou Province,China。
文摘Addressing the issues of significant entry settlement and severe mining pressure manifestations in the conventional 121 approach,an innovative N00 approach is proposed.By comparing the mining process and entry formation process of different approaches,the characteristics of entry roof settlement evolution under different approaches are obtained.The N00 approach,which incorporates roof cutting and NPR cable support,optimizes the mining and entry formation process to reduce the settlement phase of entry roof,decreases the settlement of entry roof,and enhances the steadiness of entry roof.The N00 approach modifies the entry roof structure through roof cutting and establishes a hydraulic support load mechanics model for the mining panel to derive the theoretical load pressure formula for the N00 approach’s hydraulic support.Compared with the conventional 121 approach,the pressure on the N00 approach’s hydraulic support is reduced.Empirical data obtained through field monitoring demonstrate that the N00 approach has reduced the roof settlement of the entry and weakened the mining pressure manifestation at the mining panel,achieving the goal of protecting the entry and mining panel.
文摘In this paper,the isogeometric analysis(IGA)method is employed to analyze the oscillation characteristics of functionally graded triply periodic minimal surface(FG-TPMS)curved-doubly shells integrated with magneto-electric surface layers(referred to as"FG-TPMS-MEE curved-doubly shells")subjected to low-velocity impact loads.This study presents low-velocity impact load model based on a single springmass(S-M)approach.The FG-TPMS-MEE curved-doubly shells are covered with two magneto-electric surface layers,while the core layer consists of three types:I-graph and Wrapped Package-graph(IWP),Gyroid(G),and Primitive(P),with various graded functions.These types are notable for their exceptional stiffness-to-weight ratios,enabling a wide range of potential applications.The Maxwell equations and electromagnetic boundary conditions are applied to compute the change in electric potentials and magnetic potentials.The equilibrium equations of the shell are derived from a refined higher-order shear deformation theory(HSDT),and the transient responses of the FG-TPMS-MEE curveddoubly shells are subsequently determined using Newmark's direct integration method.These results have applications in structural vibration control and the analysis of structures subjected to impact or explosive loads.Furthermore,this study provides a theoretical prediction of the low-velocity impact load and magneto-electric-elastic effects on the free vibration and transient response of FG-TPMS-MEE curved-doubly shells.
文摘For the first time, the isogeometric analysis(IGA) approach is used to model and analyze free and forced vibrations of doubly-curved magneto-electro-elastic(MEE) composite shallow shell resting on the visco-Pasternak foundation in a hygro-temperature environment. The doubly-curved MEE shallow shell types include spherical shallow shell, cylindrical shallow shell, saddle shallow shell, and elliptical shallow shell subjected to blast load are investigated. The Maxwell equation and electromagnetic boundary conditions are used to determine the vary of the electric and magnetic potentials. The MEE shallow shell's equations of motion are derived from Hamilton's principle and refined higher-order shear theory. Then, the IGA method is used to derive the laws of natural frequencies and dynamic responses of the shell under various boundary conditions. The accuracy of the model and method is verified through reliable numerical comparisons. Aside from this, the impact of the input parameters on the free and forced vibration of the doubly-curved MEE shallow shell is examined in detail. These results may be useful in the design and manufacture of military structures such as warships, fighter aircraft, drones and missiles.
文摘<Abstuact>Communicative approach in English language teaching(ELT) is frequently discussed and debated.It is believed by many linguists and teachers to be an effective methodtosolvesomeoftheteachingandlearningproblems.Thispapergivesacomprehensiveaccountoftheapproach.ItpresentstheadvantagesofcommunicativeapproachintheteachingofEnglishlanguageandhowtoapplyitbymeansofclassroomactivities.ItsuggeststhatEnglishteachersshouldconductfurtherresearchtoremedytheshortcomingsinEnglishteaching.
基金the Islamic Azad University (IAU),South Tehran Branch,Tehran,Iran in support of the present research
文摘A novel Lyapunov-based three-axis attitude intelligent control approach via allocation scheme is considered in the proposed research to deal with kinematics and dynamics regarding the unmanned aerial vehicle systems.There is a consensus among experts of this field that the new outcomes in the present complicated systems modeling and control are highly appreciated with respect to state-of-the-art.The control scheme presented here is organized in line with a new integration of the linear-nonlinear control approaches,as long as the angular velocities in the three axes of the system are accurately dealt with in the inner closed loop control.And the corresponding rotation angles are dealt with in the outer closed loop control.It should be noted that the linear control in the present outer loop is first designed through proportional based linear quadratic regulator(PD based LQR) approach under optimum coefficients,while the nonlinear control in the corresponding inner loop is then realized through Lyapunov-based approach in the presence of uncertainties and disturbances.In order to complete the inner closed loop control,there is a pulse-width pulse-frequency(PWPF) modulator to be able to handle on-off thrusters.Furthermore,the number of these on-off thrusters may be increased with respect to the investigated control efforts to provide the overall accurate performance of the system,where the control allocation scheme is realized in the proposed strategy.It may be shown that the dynamics and kinematics of the unmanned aerial vehicle systems have to be investigated through the quaternion matrix and its corresponding vector to avoid presenting singularity of the results.At the end,the investigated outcomes are presented in comparison with a number of potential benchmarks to verify the approach performance.
文摘A novel hybrid robust three-axis attitude control approach, namely HRTAC, is considered along with the well-known developments in the area of space systems, since there is a consensus among the related experts that the new insights may be taken into account as decision points to outperform the available materials. It is to note that the traditional control approaches may generally be upgraded, as long as a number of modifications are made with respect to state-of-the-art, in order to propose high-precision outcomes. Regarding the investigated issues, the robust sliding mode finite-time control approach is first designed to handle three-axis angular rates in the inner control loop, which consists of the pulse width pulse frequency modulations in line with the control allocation scheme and the system dynamics. The main subject to employ these modulations that is realizing in association with the control allocation scheme is to be able to handle a class of overactuated systems, in particular. The proportional derivative based linear quadratic regulator approach is then designed to handle three-axis rotational angles in the outer control loop, which consists of the system kinematics that is correspondingly concentrated to deal with the quaternion based model. The utilization of the linear and its nonlinear terms, simultaneously, are taken into real consideration as the research motivation, while the performance results are of the significance as the improved version in comparison with the recent investigated outcomes. Subsequently, there is a stability analysis to verify and guarantee the closed loop system performance in coping with the whole of nominal referenced commands. At the end, the effectiveness of the approach considered here is highlighted in line with a number of potential recent benchmarks.
文摘Background For the purpose of utilising hybrid vigour to produce possible hybrids with a suitable level of stability,the knowledge of gene activity and combining ability is a crucial prerequisite before choosing desirable parents.The present study was carried out with six parents crossed in full diallel fashion and generated 30 F1 hybrids.These hybrids were evaluated in two replications in Randomized Block Design at Department of Cotton,TNAU for combining ability and gene action.Diallel analysis was carried out according to Griffing’s method-I(parents + F_(1) + reciprocals) and model-I and Hayman’s graphical approach by using INDOSTAT software.Results Analysis of variance for combining ability indicated that mean square values of GCA,SCA and reciprocals were highly significant for all the traits except for the uniformity index.RG763 and K12 showed highly positively significant GCA effects for most of the yield traits while PA838 and K12 for fibre quality traits,so they were found as best general combiners.PAIG379 × K12 and PDB29 × K12 for yield traits,and PDB29 × PA838,RG763 × PA838,and CNA1007 × RG763 cross combinations for fibre quality traits could be recommended for future breeding programms.Conclusion The results of both Griffing’s and Hayman’s approaches showed that non-additive gene action predominates as SCA variance was bigger than GCA variance,so heterosis breeding is thought to be a more fruitful option for enhancing GCA of many traits.
文摘During recent years,some notions about tasks have been considered as the major part of analysis in different teaching approaches and teachers are being more interested in the use of taskbased approach both in foreign and in second language teaching.The main goal of this article is to introduce and discuss some major principles of task-based language teaching and indicates how teachers can apply them in their curriculum.
基金supported by the National Natural Science Foundation of China(61174094)the Tianjin Natural Science Foundation of China(13JCYBJC1740014JCYBJC18700)
文摘Using semi-tensor product of matrices, the controllability and stabilizability of finite automata are investigated. By expressing the states, inputs, and outputs in vector forms, the transition and output functions are represented in matrix forms.Based on this algebraic description, a necessary and sufficient condition is proposed for checking whether a state is controllable to another one. By this condition, an algorithm is established to find all the control sequences of an arbitrary length. Moreover, the stabilizability of finite automata is considered, and a necessary and sufficient condition is presented to examine whether some states can be stabilized. Finally, the study of illustrative examples verifies the correctness of the presented results/algorithms.
基金Project(2012-Z05)supported by the State Key Laboratory of Robotics,ChinaProjects(61233013,51179183)supported by the National Natural Science Foundation of China
文摘Wave driven unmanned surface vehicle(WUSV) is a new concept ocean robot drived by wave energy and solar energy,and it is very suitable for the vast ocean observations with incomparable endurance.Its dynamic modeling is very important because it is the theoretical foundation for further study in the WUSV motion control and efficiency analysis.In this work,the multibody system of WUSV was described based on D-H approach.Then,the driving principle was analyzed and the dynamic model of WUSV in longitudinal profile is established by Lagrangian mechanics.Finally,the motion simulation of WUSV and comparative analysis are completed by setting different inputs of sea state.Simulation results show that the WUSV dynamic model can correctly reflect the WUSV longitudinal motion process,and the results are consistent with the wave theory.
文摘Accidents and injuries related to work are major occupational health problems in most of the industrialized countries.Traditional approaches to manage workplace safety in mines have mainly focused on job redesign and technical aspects of engineering systems.It is being realized that compliance to rules and regulations of mines is a prerequisite;however,it is not sufficient to achieve further reduction in accident and injury rates in mines.Proactive approaches are necessary to further improve the safety standards in mines.Unsafe conditions and practices in mines lead to a number of accidents,which in turn may cause loss and injury to human lives,damages to property,and loss of production.Hazard identification and risk assessment is an important task for the mining industry which needs to consider all the risk factors at workplaces.Applications of risk management approaches in mines are necessary to identify and quantify potential hazards and to suggest effective solutions.In this paper,the following risk estimation techniques were discussed:(i)DGMS(Directorate General of Mines Safety,India)risk rating criterion,and(ii)a matrix based approach.The proposed tools were demonstrated through an application in an opencast coal mine in India.It was inferred that the risk assessment approach can be used as an effective tool to indentify and control hazards in mines.
文摘Fracture toughness is very important when applying Damage Tolerance Design and Assessment Techniques. The traditional testing approach for obtaining fracture toughness values is costly and time consuming. In order to estimate the fracture toughness of ductile metals, the fracture mechanics theory, materials plastic deformation theory and materials constructive relationships are employed here. A series of formulae and a theoretical approach are presented to calculate fracture toughness values of different materials in the plane stress and plane strain conditions. Compared with test results, evaluated values have a good agreement.
基金Project(51978068) supported by the National Natural Science Foundation of ChinaProject(2018YFE0103800) supported by the National Key R&D Program of China+1 种基金Project(2017M620434) supported by the China Postdoctoral Science FoundationProject(310821173501) support by the Special Fund for Basic Scientific Research of Central College of Chang’an University, China。
文摘In order to analyze the effects of backfill materials, geometries and slab setting on the settlement of bridge approach embankment, scale model was built based on the structural characteristics of bridge approach embankment, and scale model tests were carried out under different conditions. The results show that when graded gravels were selected as the backfill materials, the effect of setting approach slab to reduce the differential settlement is more prominent. When lime soils were selected as the backfill material, approach slab can moderate the longitudinal settlement slope. When using different backfill materials, the ultimate settlement of the positive trapezoidal backfill geometries is less than that of the inverted trapezoid, and the backfill geometries have little effect on the settlement slope.
基金supported by the National Natural Science Foundation of China(61174203)the Aeronautical Science Foundation of China(20110177002)
文摘The missile autopilot for an interceptor with tail fins and pulse thrusters is designed via the θ-D approach. The nonlin- ear dynamic model of the pitch and yaw motion of the missile is transformed into a linear-like structure with state-dependent coef- ficient (SDC) matrices. Based on the linear-like structure, a θ-D feedback controller is designed to steer the missile to track refer- ence acceleration commands. A sufficient condition that ensures the asymptotic stability of the tracking system is given based on Lyapunov's theorem. Numerical results show that the proposed autopilot achieves good tracking performance and the closed-loop tracking system is asymptotically stable.
基金Projects(51221462)supported by the National Natural Science Foundation of ChinaProject(2014QNA28)supported by the Fundamental Research Funds for the Central Universities,China
文摘The separation characteristic of raw coal from Luoyang mining area, China, was investigated by applying a dry coal beneficiation flowsheet with the dense medium gas-solid fluidized bed as main separating equipment. The experimental and simulation results indicate that the dense medium gas-solid fluidized bed can provide uniform distribution and stable fluctuation of bed densities at various heights. Two types of different separating approaches were compared using the dry coal beneficiation flowsheet. Compared with obtaining cleaning coal in the first stage of the flowsheet, a higher yield of the cleaning coal and better separation efficiency can be achieved when discharging gangue in the first stage. Finally, the results indicate that 64.86% pure cleaning coal with an ash content of 11.77% and 13.53% middlings were obtained, and 21.61% gangue was removed in two successive separation stages with the probable errors of 0.05 and 0.07 g/cm3, respectively.
基金Project(2011CB013504)supported by the National Basic Research Program(973 Program)of ChinaProject(2013BAB06B01)supported by Key Projects in the National Science&Technology Pillar Program during the Twelfth Five-year Plan Period,China+1 种基金Projects(51309089,51479049)supported by National Natural Science Foundation of ChinaProject(487237)supported by Natural Sciences and Engineering Research Council of Canada
文摘Mechanical behaviors of granular materials are complicated and greatly influenced by the particle shape.Current,some composite approaches have been proposed for realistic particle shape modelling within discrete element method(DEM),while they cannot give a good representation to the shape and mass properties of a real particle.In this work,a novel algorithm is developed to model an arbitrary particle using a cluster of non-overlapping disks.The algorithm mainly consists of two components:boundary filling and domain filling.In the boundary filling,some disks are placed along the boundary for a precise representation of the particle shape,and some more disks are placed in the domain to give an approximation to the mass properties of the particle in the domain filling.Besides,a simple method is proposed to correct the mass properties of a cluster after domain filling and reduce the number of the disks in a cluster for lower computational load.Moreover,it is another great merit of the algorithm that a cluster generated by the algorithm can be used to simulate the particle breakage because of no overlaps between the disks in a cluster.Finally,several examples are used to show the robust performance of the algorithm.A current FORTRAN version of the algorithm is available by contacting the author.
文摘This work aims at selecting optimal operating variables to obtain the minimum specific energy(SE) in sawing of rocks.A particular granite was sampled and sawn by a fully automated circular diamond sawblades.The peripheral speed,the traverse speed,the cut depth and the flow rate of cooling fluid were selected as the operating variables.Taguchi approach was adopted as a statistical design of experimental technique for optimization studies.The results were evaluated based on the analysis of variance and signal-to-noise ratio(S/N ratio).Statistically significant operating variables and their percentage contribution to the process were also determined.Additionally,a statistical model was developed to demonstrate the relationship between SE and operating variables using regression analysis and the model was then verified.It was found that the optimal combination of operating variables for minimum SE is the peripheral speed of 25 m/s,the traverse speed of 70 cm/min,the cut depth of 2 cm and the flow rate of cooling fluid of 100 mL/s.The cut depth and traverse speed were statistically determined as the significant operating variables affecting the SE,respectively.Furthermore,the regression model results reveal that the predictive model has a high applicability for practical applications.
基金Project(2013CB035402) supported by the National Basic Research Program of ChinaProjects(51105048,51209028) supported by the National Natural Science Foundation of China
文摘In order to deal with modeling problem of a pressure balance system with time-delay, nonlinear, time-varying and uncertain characteristics, an intelligent modeling procedure is proposed, which is based on artificial neural network(ANN) and input-output data of the system during shield tunneling and can overcome the precision problem in mechanistic modeling(MM) approach. The computational results show that the training algorithm with Gauss-Newton optimization has fast convergent speed. The experimental investigation indicates that, compared with mechanistic modeling approach, intelligent modeling procedure can obviously increase the precision in both soil pressure fitting and forecasting period. The effectiveness and accuracy of proposed intelligent modeling procedure are verified in laboratory tests.
文摘On the basis of analyzing the present conditions of country high school English teaching, this paper attempts to justify the feasibility of Cognitive Approach’s application to the country high school English teaching and discusses its operation in detail.