针对多目标工艺规划与车间调度集成问题(multi-objective integrated process planning and scheduling,MOIPPS),以最小化完工时间和生产能耗最低为优化目标,提出了一种考虑全局和局部最优的改进混合优化算法。通过分析集成系统工艺设...针对多目标工艺规划与车间调度集成问题(multi-objective integrated process planning and scheduling,MOIPPS),以最小化完工时间和生产能耗最低为优化目标,提出了一种考虑全局和局部最优的改进混合优化算法。通过分析集成系统工艺设计和生产调度两个问题的区别与联系,搭建了多目标问题模型和解决框架。针对两阶段集成问题提出混合优化算法,对工艺阶段采用全局搜索算法,为集成系统提供多种工艺加工方案,保证集成算法的全局搜索性能;针对调度阶段设计一种改进禁忌搜索算法,通过交叉与随机抽样扩大解的分布范围,使用邻域禁忌搜索使得算法快速收敛,并采用Pareto非支配排序获得全局最优解。实验对比分析,验证了所提算法在求解多目标工艺规划与车间调度集成问题的高效性和稳定性。展开更多
针对形状不规则复杂面目标多弹瞄准点优化算法计算效率低、稳定性差、优化能力不足的问题,提出一种基于弹药圆概率偏差(Circular Error Probable,CEP)的毁伤概率矩阵库(Damage Probability Matrix Library,DPML)和改进启发式退火优化机...针对形状不规则复杂面目标多弹瞄准点优化算法计算效率低、稳定性差、优化能力不足的问题,提出一种基于弹药圆概率偏差(Circular Error Probable,CEP)的毁伤概率矩阵库(Damage Probability Matrix Library,DPML)和改进启发式退火优化机制的高效瞄准点优化算法(Efficient Aiming Point Optimization Algorithm,EAPOA)。构建多弹瞄准点优化模型时,除考虑目标形状、导弹毁伤能力外,还考虑导弹直接毁伤、间接毁伤和多弹种联合毁伤等复杂因素对目标毁伤效果的影响。提出一种基于DPML的毁伤概率快速估计算法,提升算法优化效率和鲁棒性;设计一种基于候选瞄准点序列化的优化算法框架,并提出基于全局搜索和改进退火机制的启发式优化算法,降低瞄准点组合求解空间大小并提升算法优化能力。通过6个复杂面目标测试用例验证算法性能。研究结果表明,所提的EAPOA相比于增强精英保留策略遗传算法具有更强的优化能力,且平均优化时间仅为其1/5~1/3,在优化收益和计算效率上具有明显优势。展开更多
文摘针对多目标工艺规划与车间调度集成问题(multi-objective integrated process planning and scheduling,MOIPPS),以最小化完工时间和生产能耗最低为优化目标,提出了一种考虑全局和局部最优的改进混合优化算法。通过分析集成系统工艺设计和生产调度两个问题的区别与联系,搭建了多目标问题模型和解决框架。针对两阶段集成问题提出混合优化算法,对工艺阶段采用全局搜索算法,为集成系统提供多种工艺加工方案,保证集成算法的全局搜索性能;针对调度阶段设计一种改进禁忌搜索算法,通过交叉与随机抽样扩大解的分布范围,使用邻域禁忌搜索使得算法快速收敛,并采用Pareto非支配排序获得全局最优解。实验对比分析,验证了所提算法在求解多目标工艺规划与车间调度集成问题的高效性和稳定性。
文摘针对形状不规则复杂面目标多弹瞄准点优化算法计算效率低、稳定性差、优化能力不足的问题,提出一种基于弹药圆概率偏差(Circular Error Probable,CEP)的毁伤概率矩阵库(Damage Probability Matrix Library,DPML)和改进启发式退火优化机制的高效瞄准点优化算法(Efficient Aiming Point Optimization Algorithm,EAPOA)。构建多弹瞄准点优化模型时,除考虑目标形状、导弹毁伤能力外,还考虑导弹直接毁伤、间接毁伤和多弹种联合毁伤等复杂因素对目标毁伤效果的影响。提出一种基于DPML的毁伤概率快速估计算法,提升算法优化效率和鲁棒性;设计一种基于候选瞄准点序列化的优化算法框架,并提出基于全局搜索和改进退火机制的启发式优化算法,降低瞄准点组合求解空间大小并提升算法优化能力。通过6个复杂面目标测试用例验证算法性能。研究结果表明,所提的EAPOA相比于增强精英保留策略遗传算法具有更强的优化能力,且平均优化时间仅为其1/5~1/3,在优化收益和计算效率上具有明显优势。