期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
煤矿工业数据AI模型自动推理技术 被引量:3
1
作者 张智星 付翔 +6 位作者 张小强 李浩杰 秦一凡 刘萌 孙岩 贾一帆 杨宇琪 《工矿自动化》 CSCD 北大核心 2024年第9期138-143,共6页
煤矿生产过程的智能化主要依托于人工智能(AI)技术分析煤矿工业数据,但单一应用场景AI模型无法适用于煤矿复杂的应用场景,且仅使用分布式计算来处理AI模型输入特征值会导致模型应用效率降低。针对上述问题,提出了一种煤矿工业数据AI模... 煤矿生产过程的智能化主要依托于人工智能(AI)技术分析煤矿工业数据,但单一应用场景AI模型无法适用于煤矿复杂的应用场景,且仅使用分布式计算来处理AI模型输入特征值会导致模型应用效率降低。针对上述问题,提出了一种煤矿工业数据AI模型自动推理技术。该技术架构包括数据层、计算驱动层和模型推理层:数据层采集各类监测数据并统一存储,为计算驱动层提供原始数据;计算驱动层将数据层采集的海量原始数据转换成煤矿应用场景AI模型输入特征值,通过煤矿应用场景AI模型输入特征值双计算引擎自动切换机制,根据数据量自动合理地选择使用基于Spark的分布式计算方式或基于Python的单机计算方式,解决了海量数据计算速度慢、数据应用延迟大的问题;模型推理层将特征值输入应用场景AI模型进行推理,引入煤矿应用场景AI模型多触发方式协同推理机制,通过定时触发、人为交互触发、信号反馈触发3种触发方式,解决了在煤矿复杂的应用条件下单一应用场景AI模型利用效果差的问题。测试和应用结果表明,该技术可实现多应用场景AI模型输入特征值的快速计算,以及不同应用场景AI模型的快速、自动、协同推理。 展开更多
关键词 煤矿人工智能 煤矿工业数据 ai模型推理 海量数据计算 ai模型应用
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部