期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于4D-Arnold不等长映射的深度隐写模型参数加密研究
1
作者
段新涛
李壮
张恩
《河南师范大学学报(自然科学版)》
北大核心
2025年第4期66-73,I0011-I0013,共11页
隐写模型训练过程中需要大量数据和技术投入,因此隐写模型被窃用将对其所有者造成安全威胁和经济损失.为保护隐写模型,提出了一种基于4D-Arnold不等长映射的隐写模型参数保护方法.方法采用置乱-扩散策略,首先,置乱阶段通过4D-Aronld映...
隐写模型训练过程中需要大量数据和技术投入,因此隐写模型被窃用将对其所有者造成安全威胁和经济损失.为保护隐写模型,提出了一种基于4D-Arnold不等长映射的隐写模型参数保护方法.方法采用置乱-扩散策略,首先,置乱阶段通过4D-Aronld映射对卷积层参数跨卷积核、跨通道置乱.其次,扩散阶段采用相邻参数扩散机制在相邻参数间实现数值扩散并完成参数加密.最后,第三方无法获取任何秘密信息,实现对隐写模型的保护.实验表明,隐写模型加密后提取出的图像在PSNR,MSE,LPIPS和SSIM指标以及视觉效果上,显著降低了模型原始性能,模型隐蔽通信功能丧失.此外,所提方法在保证隐写模型加密有效性和安全性的同时,还可以应用于图像分类等其他深度模型的加密保护.
展开更多
关键词
ai模型安全
参数加密
4D-Arnold不等长映射
图像隐写
模型
卷积神经网络
在线阅读
下载PDF
职称材料
题名
基于4D-Arnold不等长映射的深度隐写模型参数加密研究
1
作者
段新涛
李壮
张恩
机构
河南师范大学计算机与信息工程学院
河南师范大学教育人工智能与个性化学习河南省重点实验室
出处
《河南师范大学学报(自然科学版)》
北大核心
2025年第4期66-73,I0011-I0013,共11页
基金
国家自然科学基金(U1904123,U20B2051)
河南省高等学校重点科研项目(23A520006)
河南省科技攻关计划(222102210199).
文摘
隐写模型训练过程中需要大量数据和技术投入,因此隐写模型被窃用将对其所有者造成安全威胁和经济损失.为保护隐写模型,提出了一种基于4D-Arnold不等长映射的隐写模型参数保护方法.方法采用置乱-扩散策略,首先,置乱阶段通过4D-Aronld映射对卷积层参数跨卷积核、跨通道置乱.其次,扩散阶段采用相邻参数扩散机制在相邻参数间实现数值扩散并完成参数加密.最后,第三方无法获取任何秘密信息,实现对隐写模型的保护.实验表明,隐写模型加密后提取出的图像在PSNR,MSE,LPIPS和SSIM指标以及视觉效果上,显著降低了模型原始性能,模型隐蔽通信功能丧失.此外,所提方法在保证隐写模型加密有效性和安全性的同时,还可以应用于图像分类等其他深度模型的加密保护.
关键词
ai模型安全
参数加密
4D-Arnold不等长映射
图像隐写
模型
卷积神经网络
Keywords
ai
model security
parameter encryption
4D-Arnold unequal length mapping
image steganography model
convolutional neural network
分类号
TP309.7 [自动化与计算机技术—计算机系统结构]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于4D-Arnold不等长映射的深度隐写模型参数加密研究
段新涛
李壮
张恩
《河南师范大学学报(自然科学版)》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部