Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue...Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue,a surrogate-based MOO algorithm is proposed in this paper where Kriging models are employed to approximate objective functions.An efficient sampling strategy is presented to sequentially capture promising samples in the design region for exact evaluations.Firstly,new sample points are generated by the MOO on surro-gate models.Then,new samples are captured by exploiting each objective function.Furthermore,a weighted sum of the improvement of hypervolume(IHV)and the distance to sampled points is calculated to select the new sample.Compared with two well-known MOO algorithms,the proposed algorithm is vali-dated by benchmark problems.In addition,two broadband MMAs are applied to verify the feasibility and efficiency of the proposed algorithm.展开更多
In order to optimize the crashworthy characteristic of energy-absorbing structures, the surrogate models of specific energy absorption (SEA) and ratio of SEA to initial peak force (REAF) with respect to the design...In order to optimize the crashworthy characteristic of energy-absorbing structures, the surrogate models of specific energy absorption (SEA) and ratio of SEA to initial peak force (REAF) with respect to the design parameters were respectively constructed based on surrogate model optimization methods (polynomial response surface method (PRSM) and Kriging method (KM)). Firstly, the sample data were prepared through the design of experiment (DOE). Then, the test data models were set up based on the theory of surrogate model, and the data samples were trained to obtain the response relationship between the SEA & REAF and design parameters. At last, the structure optimal parameters were obtained by visual analysis and genetic algorithm (GA). The results indicate that the KM, where the local interpolation method is used in Gauss correlation function, has the highest fitting accuracy and the structure optimal parameters are obtained as: the SEA of 29.8558 kJ/kg (corresponding toa=70 mm andt= 3.5 mm) and REAF of 0.2896 (corresponding toa=70 mm andt=1.9615 mm). The basis function of the quartic PRSM with higher order than that of the quadratic PRSM, and the mutual influence of the design variables are considered, so the fitting accuracy of the quartic PRSM is higher than that of the quadratic PRSM.展开更多
The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precisio...The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precision.To ensure its accuracy of detection,it is necessary to correlate their thermal models to in-orbit da⁃ta.In this work,an investigation of intelligent correlation method named Intelligent Correlation Platform for Ther⁃mal Model(ICP-TM)was established,the advanced Kriging surrogate model and efficient adaptive region opti⁃mization algorithm were introduced.After the correlation with this method for FY-3E/HIRAS-Ⅱ,the results indi⁃cate that compared with the data in orbit,the error of the thermal model has decreased from 5 K to within±1 K in cold case(10℃).Then,the correlated model is validated in hot case(20℃),and the correlated model exhibits good universality.This correlation precision is also much superiors to the general ones like 3 K in other similar lit⁃erature.Furthermore,the process is finished in 8 days using ICP-TM,the efficiency is much better than 3 months based on manual.The results show that the proposed approach significantly enhances the accuracy and efficiency of thermal model,this contributes to the precise thermal control of subsequent infrared optical payloads.展开更多
掘进机回转台在截割煤岩时承受偏载荷及强冲击作用,其性能影响掘进机的工作效率及安全性。为探究掘进机回转台疲劳寿命的影响因素及最佳服役参数,提出了一种基于Kriging代理模型和DEM-MFBD(discrete element model-multi flexible body ...掘进机回转台在截割煤岩时承受偏载荷及强冲击作用,其性能影响掘进机的工作效率及安全性。为探究掘进机回转台疲劳寿命的影响因素及最佳服役参数,提出了一种基于Kriging代理模型和DEM-MFBD(discrete element model-multi flexible body dynamics,离散单元法-多柔性体动力学)双向耦合技术的回转台疲劳寿命预测方法。首先,建立了掘进机截割部与回转台的空间受力模型,明确了截割部与回转台的受力规律。然后,联合RecurDyn与EDEM软件对回转台进行双向刚柔耦合动力学仿真分析,获得了回转台在工作状态下的应力分布。最后,利用拉丁超立方抽样法选取15组掘进机服役参数作为输入,以回转台疲劳寿命为响应,建立了对应的Kriging代理模型,并利用粒子群优化算法对代理模型进行寻优,得到了回转台在最佳服役参数下的疲劳寿命。结果表明,当掘进机的截割头转速为54 r/min、回转台横摆速度为1.003 m/min、截割臂垂直摆角为7°时,回转台的疲劳寿命最长。结合DEM-MFBD双向耦合技术、Kriging代理模型与粒子群优化算法来探究掘进机的最佳服役参数,可为回转类部件的优化设计提供新思路。展开更多
基金supported by the National Key Research and Development Program(2021YFB3502500).
文摘Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue,a surrogate-based MOO algorithm is proposed in this paper where Kriging models are employed to approximate objective functions.An efficient sampling strategy is presented to sequentially capture promising samples in the design region for exact evaluations.Firstly,new sample points are generated by the MOO on surro-gate models.Then,new samples are captured by exploiting each objective function.Furthermore,a weighted sum of the improvement of hypervolume(IHV)and the distance to sampled points is calculated to select the new sample.Compared with two well-known MOO algorithms,the proposed algorithm is vali-dated by benchmark problems.In addition,two broadband MMAs are applied to verify the feasibility and efficiency of the proposed algorithm.
基金Project(U1334208)supported by the National Natural Science Foundation of ChinaProject(2013GK2001)supported by the Fund of Hunan Provincial Science and Technology Department,China
文摘In order to optimize the crashworthy characteristic of energy-absorbing structures, the surrogate models of specific energy absorption (SEA) and ratio of SEA to initial peak force (REAF) with respect to the design parameters were respectively constructed based on surrogate model optimization methods (polynomial response surface method (PRSM) and Kriging method (KM)). Firstly, the sample data were prepared through the design of experiment (DOE). Then, the test data models were set up based on the theory of surrogate model, and the data samples were trained to obtain the response relationship between the SEA & REAF and design parameters. At last, the structure optimal parameters were obtained by visual analysis and genetic algorithm (GA). The results indicate that the KM, where the local interpolation method is used in Gauss correlation function, has the highest fitting accuracy and the structure optimal parameters are obtained as: the SEA of 29.8558 kJ/kg (corresponding toa=70 mm andt= 3.5 mm) and REAF of 0.2896 (corresponding toa=70 mm andt=1.9615 mm). The basis function of the quartic PRSM with higher order than that of the quadratic PRSM, and the mutual influence of the design variables are considered, so the fitting accuracy of the quartic PRSM is higher than that of the quadratic PRSM.
基金Supported by the National Key Research and Development Program of China(2022YFB3904803)。
文摘The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precision.To ensure its accuracy of detection,it is necessary to correlate their thermal models to in-orbit da⁃ta.In this work,an investigation of intelligent correlation method named Intelligent Correlation Platform for Ther⁃mal Model(ICP-TM)was established,the advanced Kriging surrogate model and efficient adaptive region opti⁃mization algorithm were introduced.After the correlation with this method for FY-3E/HIRAS-Ⅱ,the results indi⁃cate that compared with the data in orbit,the error of the thermal model has decreased from 5 K to within±1 K in cold case(10℃).Then,the correlated model is validated in hot case(20℃),and the correlated model exhibits good universality.This correlation precision is also much superiors to the general ones like 3 K in other similar lit⁃erature.Furthermore,the process is finished in 8 days using ICP-TM,the efficiency is much better than 3 months based on manual.The results show that the proposed approach significantly enhances the accuracy and efficiency of thermal model,this contributes to the precise thermal control of subsequent infrared optical payloads.
文摘掘进机回转台在截割煤岩时承受偏载荷及强冲击作用,其性能影响掘进机的工作效率及安全性。为探究掘进机回转台疲劳寿命的影响因素及最佳服役参数,提出了一种基于Kriging代理模型和DEM-MFBD(discrete element model-multi flexible body dynamics,离散单元法-多柔性体动力学)双向耦合技术的回转台疲劳寿命预测方法。首先,建立了掘进机截割部与回转台的空间受力模型,明确了截割部与回转台的受力规律。然后,联合RecurDyn与EDEM软件对回转台进行双向刚柔耦合动力学仿真分析,获得了回转台在工作状态下的应力分布。最后,利用拉丁超立方抽样法选取15组掘进机服役参数作为输入,以回转台疲劳寿命为响应,建立了对应的Kriging代理模型,并利用粒子群优化算法对代理模型进行寻优,得到了回转台在最佳服役参数下的疲劳寿命。结果表明,当掘进机的截割头转速为54 r/min、回转台横摆速度为1.003 m/min、截割臂垂直摆角为7°时,回转台的疲劳寿命最长。结合DEM-MFBD双向耦合技术、Kriging代理模型与粒子群优化算法来探究掘进机的最佳服役参数,可为回转类部件的优化设计提供新思路。