期刊文献+
共找到127篇文章
< 1 2 7 >
每页显示 20 50 100
Research on multi-scale simulation and dynamic verification of high dynamic MEMS components in additive manufacturing 被引量:1
1
作者 Sining Lv Hengzhen Feng +2 位作者 Wenzhong Lou Chuan Xiao Shiyi Li 《Defence Technology(防务技术)》 2025年第5期275-291,共17页
Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects s... Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components. 展开更多
关键词 additive manufacturing High dynamic MEMS components Multiscale control Process optimization High dynamic verification
在线阅读 下载PDF
Boron-containing copolymers as environmentally friendly lubricant additives
2
作者 Hua Xue Fengchun Liang +4 位作者 Weili Yang Qun He Meirong Cai Feng Zhou Weifeng Bu 《日用化学工业(中英文)》 北大核心 2025年第1期1-11,共11页
Increasing environmental concerns about limiting harmful emissions has necessitated sulfur-and phosphorus-free green lubricant additives.Although boron-containing compounds have been widely investigated as green lubri... Increasing environmental concerns about limiting harmful emissions has necessitated sulfur-and phosphorus-free green lubricant additives.Although boron-containing compounds have been widely investigated as green lubricant additives,their macromolecular analogs have been rarely considered yet to develop environmentally friendly lubricant additives.In this work,a series of boron-containing copolymers have been synthesized by free-radical copolymerization of stearyl methacrylate and isopropenyl boronic acid pinacol ester with different feeding ratios(S_(n)-r-B_(m),n=1,m=1/3,1,2,3,5,9).The resulting copolymers of S_(n)-r-B_(m)(n=1,m=1/3,1,2,3,5)are readily dispersed in the PAO-10 base oil and form micelle-like aggregates with hydrodynamic diameters ranging from 9.7 to 52 nm.SRV-IV oscillating reciprocating tribological tests on ball-on-flat steel pairs show that compared with the base oil of PAO-10,the friction coefficients and wear volumes of the base oil solutions of S_(n)-r-B_(m)decrease considerably up to 62%and 97%,respectively.Moreover,the base oil solution of S_(1)-r-B_(1)exhibits an excellent load-bearing capacity of(850±100)N.These superior lubricating properties are due to the formation of protective tribofilms comprising S_(n)-r-B_(m),boron oxide,and iron oxide compounds on the lubricated steel surface.Therefore,the boron-containing copolymers can be regarded as a novel class of environmentally friendly lubricating oil macroadditives for efficient friction and wear reduction without sulfur and phosphorus elements. 展开更多
关键词 friction and wear reduction lubricant additives boron-containing copolymers POLYMERIZATION
在线阅读 下载PDF
Enhancing Cycle Life of Graphite‖LiFePO_(4)Batteries via Copper Substituted Li_(2)Ni_(1-x)Cu_(x)O_(2)Cathode Prelithiation Additive
3
作者 Jian-Ming Zheng Jing-Wen Zhang Tian-Peng Jiao 《电化学(中英文)》 北大核心 2025年第2期17-27,共11页
Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)Ni... Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)NiO_(2)suffers from inferior delithiation kinetics during the first cycle.Herein,we investigated the effects of the cost-effective copper substituted Li_(2)Ni_(1-x)Cu_(x)O_(2)(x=0,0.2,0.3,0.5,0.7)synthesized by a high-temperature solid-phase method on the structure,morphology,electrochemical performance of graphite‖LiFePO_(4)battery.The X-ray diffraction(XRD)refinement result demonstrated that Cu substitution strategy could be favorable for eliminating the NiO_(x)impurity phase and weakening Li-O bond.Analysis on density of states(DOS)indicates that Cu substitution is good for enhancing the electronic conductivity,as well as reducing the delithi-ation voltage polarization confirmed by electrochemical characterizations.Therefore,the optimal Li_(2)Ni_(0.7)Cu_(0.3)O_(2)delivered a high delithiation capacity of 437 mAh·g^(-1),around 8%above that of the pristine Li_(2)NiO_(2).Furthermore,a graphite‖LiFePO_(4)pouch cell with a nominal capacity of 3000 mAh demonstrated a notably improved reversible capacity,energy density and cycle life through introducing 2 wt%Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive,delivering a 6.2 mAh·g^(-1)higher initial discharge capacity and achieving around 5%improvement in capacity retentnion at 0.5P over 1000 cycles.Additionally,the post-mortem analyses testified that the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive could suppress solid electrolyte interphase(SEI)decomposition and homogenize the Li distribution,which benefits to stabilizing interface between graphite and electrolyte,and alleviating dendritic Li plating.In conclusion,the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive may offer advantages such as lower cost,lower delithiation voltage and higher prelithiation capacity compared with Li_(2)NiO_(2),making it a promising candidate of cathode prelithiation additive for next-generation LIBs. 展开更多
关键词 Li_(2)Ni_(1-x)Cu_(x)O_(2) Cathode prelithiation additive LiFePO_(4)battery Cycle life Grid energy storage
在线阅读 下载PDF
Sustainable large-format additive manufacturing of composite molds with 45-degree deposition strategies
4
作者 Pablo Castelló-Pedrero Javier Bas-Bolufer +2 位作者 César García-Gascón Juan Antonio García-Manrique Francisco Chinesta 《Defence Technology(防务技术)》 2025年第9期303-317,共15页
Military missions in hostile environments are often costly and unpredictable,with squadrons sometimes facing isolation and resource scarcity.In such scenarios,critical components in vehicles,drones,and energy generato... Military missions in hostile environments are often costly and unpredictable,with squadrons sometimes facing isolation and resource scarcity.In such scenarios,critical components in vehicles,drones,and energy generators may require structural reinforcement or repair due to damage.This paper proposes a portable,on-site production method for molds under challenging conditions,where material supply is limited.The method utilizes large format additive manufacturing(LFAM)with recycled composite materials,sourced from end-of-life components and waste,as feedstock.The study investigates the microstructural effects of recycling through shredding techniques,using microscopic imaging.Three potential defense-sector applications are explored,specifically in the aerospace,automotive,and energy industries.Additionally,the influence of key printing parameters,particularly nonparallel plane deposition at a 45-degree angle,on the mechanical behavior of ABS reinforced with 20%glass fiber(GF)is examined.The results demonstrate the feasibility of this manufacturing approach,highlighting reductions in waste material and production times compared to traditional methods.Shorter layer times were found to reduce thermal gradients between layers,thereby improving layer adhesion.While 45-degree deposition enhanced Young's modulus,it slightly reduced interlayer adhesion quality.Furthermore,recycling-induced fiber length reduction led to material degradation,aligning with findings from previous studies.Challenges encountered during implementation included weak part adherence to the print bed and local excess material deposition.Overall,the proposed methodology offers a cost-effective alternative to traditional CNC machining for mold production,demonstrating its potential for on-demand manufacturing in resource-constrained environments. 展开更多
关键词 Large format additive manufacturing Recycled material Composite materials Glass fiber MOLDS DRONES Wind turbine Racing car
在线阅读 下载PDF
Synergistic enhancement of load-bearing and energy-absorbing performance in additively manufactured lattice structures through modifications to conventional unit cells
5
作者 Yi Ren Yu Nie +5 位作者 Bowen Xue Yucheng Zhao Lulu Liu Chao Lou Yongxun Li Wei Chen 《Defence Technology(防务技术)》 2025年第10期116-130,共15页
The unit cell configuration of lattice structures critically influences their load-bearing and energy absorption performance.In this study,three novel lattice structures were developed by modifying the conventional FB... The unit cell configuration of lattice structures critically influences their load-bearing and energy absorption performance.In this study,three novel lattice structures were developed by modifying the conventional FBCCZ unit cell through reversing,combining,and turning strategies.The designed lattices were fabricated via laser powder bed fusion(LPBF)using Ti-6Al-4V powder,and the mechanical properties,energy absorption capacity,and deformation behaviors were systematically investigated through quasi-static compression tests and finite element simulations.The results demonstrate that the three modified lattices exhibit superior performance over the conventional FBCCZ structure in terms of fracture strain,specific yield strength,specific ultimate strength,specific energy absorption,and energy absorption efficiency,thereby validating the efficacy of unit cell modifications in enhancing lattice performance.Notably,the CFBCCZ and TFBCCZ lattices significantly outperform both the FBCCZ and RFBCCZ lattice structures in load-bearing and energy absorption.While TFBCCZ shows marginally higher specific elastic modulus and energy absorption efficiency than CFBCCZ,the latter achieves superior energy absorption due to its highest ultimate strength and densification strain.Finite element simulations further reveal that the modified lattices,through optimized redistribution and adjustment of internal nodes and struts,effectively alleviate stress concentration during loading.This structural modification enhances the structural integrity and deformation stability under external loads,enabling a synergistic enhancement of load-bearing capacity and energy absorption performance. 展开更多
关键词 Load-bearing Energy absorption additive manufacturing Lattice structure Unit cell modification
在线阅读 下载PDF
A review of the experimental and numerical studies on the compression behavior of the additively produced metallic lattice structures at high and low strain rates
6
作者 Muhammad Arslan Bin Riaz Mustafa Guden 《Defence Technology(防务技术)》 2025年第7期1-49,共49页
Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in... Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in the impact load mitigation where an external kinetic energy is absorbed by the deformation/crushing of lattice cells.This has motivated a growing number of experimental and numerical studies,recently,on the crushing behavior of additively produced lattice structures.The present study overviews the dynamic and quasi-static crushing behavior of additively produced Ti64,316L,and AlSiMg alloy lattice structures.The first part of the study summarizes the main features of two most commonly used additive processing techniques for lattice structures,namely selective-laser-melt(SLM)and electro-beam-melt(EBM),along with a description of commonly observed process induced defects.In the second part,the deformation and strain rate sensitivities of the selected alloy lattices are outlined together with the most widely used dynamic test methods,followed by a part on the observed micro-structures of the SLM and EBM-processed Ti64,316L and AlSiMg alloys.Finally,the experimental and numerical studies on the quasi-static and dynamic compression behavior of the additively processed Ti64,316L,and AlSiMg alloy lattices are reviewed.The results of the experimental and numerical studies of the dynamic properties of various types of lattices,including graded,non-uniform strut size,hollow,non-uniform cell size,and bio-inspired,were tabulated together with the used dynamic testing methods.The dynamic tests have been noted to be mostly conducted in compression Split Hopkinson Pressure Bar(SHPB)or Taylor-and direct-impact tests using the SHPB set-up,in all of which relatively small-size test specimens were tested.The test specimen size effect on the compression behavior of the lattices was further emphasized.It has also been shown that the lattices of Ti64 and AlSiMg alloys are relatively brittle as compared with the lattices of 316L alloy.Finally,the challenges associated with modelling lattice structures were explained and the micro tension tests and multi-scale modeling techniques combining microstructural characteristics with macroscopic lattice dynamics were recommended to improve the accuracy of the numerical simulations of the dynamic compression deformations of metallic lattice structures. 展开更多
关键词 Metallic lattice structures additive manufacturing Strain rate sensitivity MICROSTRUCTURE Dynamic compression High strain rate loading MODELLING
在线阅读 下载PDF
Microstructure and mechanical properties of additively manufactu
7
作者 MA Pan YANG Hong +5 位作者 ZHANG Zhi-yu XIE Xiao-chang YANG Ping KONDA-GOKULDOSS Prashanth ZHANG Han JIA Yan-dong 《Journal of Central South University》 2025年第4期1167-1178,共12页
High-entropy alloy composites(HEACs)have attracted significant attention due to their exceptional mechanical properties and chemical stability.By adjusting the content of reinforcing particles in the high-entropy allo... High-entropy alloy composites(HEACs)have attracted significant attention due to their exceptional mechanical properties and chemical stability.By adjusting the content of reinforcing particles in the high-entropy alloy and by employing advanced additive manufacturing techniques,high-performance HEACs can be fabricated.However,there is still considerable room for improvement in their performance.In this study,CoCrFeMnNi HEA powders were used as the matrix,and NiCoFeAlTi high-entropy intermetallic powders were used as the high-entropy reinforcement(HER).CoCrFeMnNi/NiCoFeAlTi HEACs were fabricated using selective laser melting technology.The study results indicate that after aging,the microstructure of HEACs with HER exhibits Al-and Ti-rich nano-oxide precipitates with an orthorhombic CMCM type structure system.After aging at 873 K for 2 h,HEACs with HER achieved excellent overall mechanical properties,with an ultimate tensile strength of 731 MPa.This is attributed to the combined and synergistic effects of precipitation strengthening,dislocation strengthening,and the high lattice distortion caused by high intragranular defects,which provide a multi-scale strengthening and hardening mechanism for the plastic deformation of HEACs with HER.This study demonstrates that aging plays a crucial role in controlling the precipitate phases in complex multi-element alloys. 展开更多
关键词 additive manufacturing selective laser melting high-entropy alloy composite high-entropy intermetallic powders aging treatment microstructure mechanical properties
在线阅读 下载PDF
Perspectives on additive manufacturing for warhead applications
8
作者 Hao Xue Qiang Zhou +1 位作者 Chuan Xiao Guangyan Huang 《Defence Technology(防务技术)》 2025年第1期225-251,共27页
According to different damage modes,warheads are roughly divided into three types:fragmentation warheads,shaped charge warheads,and penetrating warheads.Due to limitations in material and structural manufacturing,trad... According to different damage modes,warheads are roughly divided into three types:fragmentation warheads,shaped charge warheads,and penetrating warheads.Due to limitations in material and structural manufacturing,traditional manufacturing methods make it difficult to fully utilize the damage ability of the warhead.Additive manufacturing(AM)technology can fabricate complex structures,with classified materials composition and customized components,while achieving low cost,high accuracy,and rapid production of the parts.The maturity of AM technology has brought about a new round of revolution in the field of warheads.In this paper,we first review the principles,classifications,and characteristics of different AM technologies.The development trends of AM technologies are pointed out,including multi-material AM technology,hybrid AM technology,and smart AM technology.From our survey,PBF,DED,and EBM technologies are mainly used to manufacture warhead damage elements.FDM and DIW technologies are mainly used to manufacture warhead charges.Then,the research on the application of AM technology in three types of warhead and warhead charges was reviewed and the existing problems and progress of AM technologies in each warhead were analyzed.Finally,we summarized the typical applications and look forward to the application prospects of AM technology in the field of warheads. 展开更多
关键词 additive manufacturing Fragmentation warhead Shaped charge warhead Penetrating warhead Warhead charge
在线阅读 下载PDF
Erratum to:Evolution of microstructure and mechanical properties in multi-layer 316 L-TiC composite fabricated by selective laser melting additive manufacturing
9
作者 Sasan YAZDANI Suleyman TEKELI +2 位作者 Hossein RABIEIFAR Ufuk TAŞCI Elina AKBARZADEH 《Journal of Central South University》 2025年第2期691-691,共1页
Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technologic... Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technological Research Council of Turkey(TÜB˙ITAK)for receiving financial support for this work through the 2221 Fellowship Program for Visiting Scientists and Scientists on Sabbatical Leave(Grant ID:E 21514107-115.02-228864).Sasan YAZDANI also expresses his gratitude to Sahand University of Technology for granting him sabbatical leave to facilitate the completion of this research. 展开更多
关键词 additive manufacturing microstructure mechanical properties fellowship program multi layer L TIC composite selective laser melting
在线阅读 下载PDF
大蒜(Allium sativum L.)及大蒜素(Garlicin)作为添加剂(Additives)在水产养殖业中的应用 被引量:3
10
作者 王兴礼 徐大节 《现代渔业信息》 2003年第8期27-28,共2页
大蒜具有多种生物学功能。大蒜素是大蒜提取液中主要生物活性成分的总称。作者简要概述大蒜及大蒜素作为添加剂在水产养殖业中的应用。
关键词 大蒜 Allium-sativumL. 大蒜素 Garlicin 添加剂 additiveS 水产养殖业 应用 生物学功能
在线阅读 下载PDF
基于Additive Runge-Kutta方法的激波聚焦起爆高精度数值模拟 被引量:1
11
作者 王成 宋清官 《北京理工大学学报》 EI CAS CSCD 北大核心 2016年第2期137-143,共7页
基于详细氢氧化学动力学模型,建立了描述氢氧爆轰的多组分反应欧拉方程组.针对建立的反应欧拉方程组,数值方法上采用3阶Additive Runge-Kutta方法对时间项进行积分,采用5阶精度的加权本质无振荡(WENO)格式对空间对流项进行离散,自主研... 基于详细氢氧化学动力学模型,建立了描述氢氧爆轰的多组分反应欧拉方程组.针对建立的反应欧拉方程组,数值方法上采用3阶Additive Runge-Kutta方法对时间项进行积分,采用5阶精度的加权本质无振荡(WENO)格式对空间对流项进行离散,自主研发了大规模高精度计算程序.该程序能够处理化学反应源项引起的刚性问题,且能节省计算时间和计算内存.对半球型、半椭球型、圆锥型3种结构形式凹面腔内的激波聚焦起爆过程进行了数值模拟,数值模拟研究得到了不同结构形式凹面腔内的激波聚焦起爆过程. 展开更多
关键词 详细化学动力学模型 additive RUNGE-KUTTA方法 WENO格式 激波聚焦
在线阅读 下载PDF
Hall-Petch relationship in selective laser melting additively manufactured metals:using grain or cell size? 被引量:26
12
作者 WANG Yin WANG Yue-ting +4 位作者 LI Rui-di NIU Peng-da WANG Min-bo YUAN Tie-chui LI Kun 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1043-1057,共15页
The mechanical properties of many materials prepared by additive manufacturing technology have been greatly improved.High strength is attributed to grain refinement,formation of high density dislocation and existence ... The mechanical properties of many materials prepared by additive manufacturing technology have been greatly improved.High strength is attributed to grain refinement,formation of high density dislocation and existence of cellular structures with nanoscale during manufacturing.In addition,the super-saturated solid solution of elements in the matrix and the solid solution segregation along the wall of the cellular structures also promote the improvement of strength by enhancing dislocation pinning.Hence,the existence of cellular structure in grains leads to differences in the prediction of material strength by Hall-Petch relationship,and there is no unified calculation method to determine the d value as grain size or cell size.In this work,representative materials including austenite 316L SS were printed by selective laser melting(SLM),and the strength was predicted.The values of cell size and grain size were substituted into Hall-Petch formula,and the results showed that the calculation error for 316L is increased from 4.1%to 11.9%.Therefore,it is concluded that the strength predicted by grain size is more accurate than that predicted by cell size in additive manufacturing materials.When calculating the yield strength of laser additive manufacturing metal materials through the Hall-Petch formula,the grain size should be used as the basis for calculation. 展开更多
关键词 additive manufacturing Hall-Petch relationship grains cellular structures mechanical property
在线阅读 下载PDF
METHANE STORAGE VIA HYDRATE FORMATION USING CALCIUM HYPOCHLORITE AS ADDITIVE 被引量:12
13
作者 郭彦坤 樊栓狮 +2 位作者 郭开华 石磊 陈勇 《化工学报》 EI CAS CSCD 北大核心 2002年第5期452-453,共2页
关键词 GAS STORAGE HYDRATE CALCIUM HYPOCHLORITE additive
在线阅读 下载PDF
Effects of MgO additive on metallurgical properties of fluxed-pellet 被引量:11
14
作者 GUO He SHEN Feng-man +2 位作者 JIANG Xin GAO Qiang-jian DING Guan-gen 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第12期3238-3251,共14页
As a main charging burden of blast furnace(BF)ironmaking process,pellets play an important role in ironmaking process.However,compared with sinters,there are some inevitable disadvantages for traditional acid pellets,... As a main charging burden of blast furnace(BF)ironmaking process,pellets play an important role in ironmaking process.However,compared with sinters,there are some inevitable disadvantages for traditional acid pellets,e.g.,reduction swell,low melting temperature.Therefore,the fluxed-pellets have been applied in BF,especially MgO-fluxed pellets.In the present study,the effects of category and content of MgO bearing additive on the compressive strength(CS),reduction swelling index(RSI),reduction disintegration index(RDI)and melting-dripping properties of the pellets were investigated.Minerals composition,pore distribution and microstructure of MgO-flux pellets were studied by X-ray powder diffraction(XRD),mercury intrusion method and scanning electron microscopy(SEM),respectively.The results show that the light burned magnesite(LBM)is more suitable MgO bearing additive for fluxed-pellets.With increasing LBM content from 0 to 2.0%,the CS decreases from 3066 to 2689 N,RSI decreases from 16.43%to 9.97%and RDI decreases from 19.2%to 12.99%.The most appropriate MgO bearing additive content in the fluxed-pellets is 2.0%according to principal component analysis(PCA). 展开更多
关键词 PELLETS MgO bearing additive porosity SWELLING IRONMAKING principal component analysis
在线阅读 下载PDF
Influence of flux additives on iron ore oxidized pellets 被引量:22
15
作者 范晓慧 甘敏 +2 位作者 姜涛 袁礼顺 陈许玲 《Journal of Central South University》 SCIE EI CAS 2010年第4期732-737,共6页
Six additives,i.e.,limestone,lime,magnesite,magnesia,dolomite and light-burned-dolomite,were added for investigating their influences on the pellet quality.For green balls,adding lime and light-burned-dolomite makes t... Six additives,i.e.,limestone,lime,magnesite,magnesia,dolomite and light-burned-dolomite,were added for investigating their influences on the pellet quality.For green balls,adding lime and light-burned-dolomite makes the wet drop strength decrease firstly,and then increase with further increase of additive dosage.Ca(OH)2 affects the bentonite properties at the beginning,but the binding property of Ca(OH)2 will be main when the dosage is higher.The other four additives decrease the drop strength for their disadvantageous physical properties.For preheated pellets,no mater what kind of additive is added,the compressive strength will be decreased because of unmineralized additives.For roasted pellets,calcium additives can form binding phase of calcium-ferrite,and suitable liquid phase will improve recrystallization of hematite,but excessive liquid will destroy the structure of pellets,so the compressive strength of pellet increases firstly and then drops.When adding magnesium additives,the strength will be decreased because of the oxidation of magnetite retarded by MgO. 展开更多
关键词 iron ore additiveS oxidized pellets compressive strength
在线阅读 下载PDF
Microstructure and mechanical property of additively manufactured NiTi alloys:A comparison between selective laser melting and directed energy deposition 被引量:14
16
作者 ZHENG Dan LI Rui-di +4 位作者 YUAN Tie-chui XIONG Yi SONG Bo WANG Jia-xing SU Ya-dong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1028-1042,共15页
NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emph... NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emphasis on its phase composition,microstructure,mechanical property and deformation mechanism.The results show that the yield strength and ductility obtained by SLM are 100 MPa and 8%,respectively,which are remarkably different from DED result with 700 MPa and 2%.The load path of SLM sample presents shape memory effect,corresponding to martensite phase detected by XRD;while the load path of DED presents pseudo-elasticity with austenite phase.In SLM sample,fine grain and hole provide a uniform deformation during tensile test,resulting in a better elongation.Furthermore,the nonequilibrium solidification was studied by a temperature field simulation to understand the difference of the two 3D printing methods.Both temperature gradient G and growth rate R determine the microstructure and phase in the SLM sample and DED sample,which leads to similar grain morphologies because of similar G/R.While higher G×R of SLM leads to a finer grain size in SLM sample,providing enough driving force for martensite transition and subsequently changing texture compared to DED sample. 展开更多
关键词 Ni50.8Ti49.2 shape memory alloy additive manufacturing selective laser melting laser directed energy deposition mechanical properties
在线阅读 下载PDF
Preparation of nano-copper as lubrication oil additive 被引量:6
17
作者 王晓丽 徐滨士 +3 位作者 许一 于鹤龙 史佩京 刘谦 《Journal of Central South University》 SCIE EI CAS 2005年第S2期203-206,共4页
Nano-copper used as lubrication oil additive has good tribological property and active self-repairing effect for friction pairs. The reduction in liquid phase for preparing nano-additive is one of the most common meth... Nano-copper used as lubrication oil additive has good tribological property and active self-repairing effect for friction pairs. The reduction in liquid phase for preparing nano-additive is one of the most common method. Nano-copper was prepared by reduction in liquid phase. The different project and routine practice for preparing nano-copper were researched. The dispersion problem of nano-copper was investigated by surface treatment and high dispersion. The particles dimension, the dispersion stability and the purity of nano-copper were characterized by TEM and XRD. The conclusion indicates that the methods of the preparation and dispersion can obtain 20nm copper additive with good dispersion property in lubrication oil. 展开更多
关键词 NANO-COPPER LUBRICATION OIL additive reduction in LIQUID phase DISPERSION
在线阅读 下载PDF
A novel method to fabricate TiAl intermetallic alloy 3D parts using additive manufacturing 被引量:6
18
作者 J.J.S. Dilip H. Miyanaji +2 位作者 Austin Lassell Thomas L. Starr Brent Stucker 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第2期72-76,共5页
The present work explores the feasibility of fabricating porous 3D parts in TiAl intermetallic alloy directly from Tie6Ale4V and Al powders. This approach uses a binder jetting additive manufacturing process followed ... The present work explores the feasibility of fabricating porous 3D parts in TiAl intermetallic alloy directly from Tie6Ale4V and Al powders. This approach uses a binder jetting additive manufacturing process followed by reactive sintering. The results demonstrate that the present approach is successful for realizing parts in TiAl intermetallic alloy. 展开更多
关键词 additive manufacturing BINDER JETTING INTERMETALLIC Titanium aluminide Reactive SINTERING
在线阅读 下载PDF
Towards a circular metal additive manufacturing through recycling of materials: A mini review 被引量:8
19
作者 XIA Yang DONG Zhao-wang +2 位作者 GUO Xue-yi TIAN Qing-hua LIU Yong 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第4期1134-1145,共12页
Additive manufacturing is a new emerging technology which is ideal for low-to-zero waste production, and it is considered to be a green and clean process that has the potential to lower the cost and energy consumption... Additive manufacturing is a new emerging technology which is ideal for low-to-zero waste production, and it is considered to be a green and clean process that has the potential to lower the cost and energy consumption of production. However, the cost of the feedstock for additive manufacturing and the additive manufactured parts is usually very high, which hinders the further application of additive manufacturing, especially for the metal additive manufacturing. The concept of circular metal additive manufacturing involves the recycling of the metal feedstock and the additive manufactured parts leading to the truly zero waste production and the most energy saving. This paper reviews the technologies that help the formation of a circular metal additive manufacturing through recycling of the feedstocks and the damaged metal parts. Reactive metals, such as titanium, tend to be contaminated easily during handling and production. Recycling of the titanium for achieving a circular titanium additive manufacturing is reviewed in detail. 展开更多
关键词 RECYCLING additive manufacturing TITANIUM POWDER
在线阅读 下载PDF
Effect of deposition rate on microstructure and mechanical properties of wire arc additive manufacturing of Ti-6Al-4V components 被引量:8
20
作者 ZHANG Pei-lei JIA Zhi-yuan +7 位作者 YAN Hua YU Zhi-shui WU Di SHI Hai-chuan WANG Fu-xin TIAN Ying-tao MA Song-yun LEI Wei-sheng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1100-1110,共11页
Wire arc additive manufacturing(WAAM)is a novel manufacturing technique by which high strength metal components can be fabricated layer by layer using an electric arc as the heat source and metal wire as feedstock,and... Wire arc additive manufacturing(WAAM)is a novel manufacturing technique by which high strength metal components can be fabricated layer by layer using an electric arc as the heat source and metal wire as feedstock,and offers the potential to produce large dimensional structures at much higher build rate and minimum waste of raw material.In the present work,a cold metal transfer(CMT)based additive manufacturing was carried out and the effect of deposition rate on the microstructure and mechanical properties of WAAM Ti-6Al-4V components was investigated.The microstructure of WAAM components showed similar microstructural morphology in all deposition conditions.When the deposition rate increased from 1.63 to 2.23 kg/h,the ultimate tensile strength(UTS)decreased from 984.6 MPa to 899.2 MPa and the micro-hardness showed a scattered but clear decline trend. 展开更多
关键词 wire and arc additive manufacturing titanium alloys cold metal transfer deposition rate
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部