期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于AD-YOLOX-Nano的茶叶嫩芽识别算法
1
作者 高芳征 温鑫 +3 位作者 黄家才 陈光明 金少宇 赵雪迪 《中国农机化学报》 北大核心 2025年第1期178-184,F0002,共8页
为解决茶叶嫩芽识别困难,提高自然环境下茶叶嫩芽识别的精确性和鲁棒性,提出一种融入注意力机制和深度可分离卷积的改进型YOLOX-Nano(AD-YOLOX-Nano)茶叶嫩芽识别算法。该算法以YOLOX-Nano模型为基础,采用CSPDarkNet作为主干网络,通过在... 为解决茶叶嫩芽识别困难,提高自然环境下茶叶嫩芽识别的精确性和鲁棒性,提出一种融入注意力机制和深度可分离卷积的改进型YOLOX-Nano(AD-YOLOX-Nano)茶叶嫩芽识别算法。该算法以YOLOX-Nano模型为基础,采用CSPDarkNet作为主干网络,通过在CSPDarkNet网络中引入深度可分离卷积(Depthwise Separable Convolution)来减少特征提取工作量,并将卷积注意力模块(Convolutional Block Attention Module)融入到YOLOX-Nano网络的特征金字塔中,学习不同通道的特征相关性,增强网络的深度信息传递,提高模型在不同场景下对茶叶嫩芽的识别能力。结果表明:AD-YOLOX-Nano算法的平均精度AP值和F_(1)值分别为85.6%和86%,相较于同环境下YOLOX-Nano算法,该算法的模型大小基本保持不变,但其AP值和F_(1)值分别提高2.7%和3%。与常用的YOLOv5-S、YOLOv4和Faster R-CNN等目标检测算法相比,该AD-YOLOX-Nano算法模型大小仅为它们的1/7,但AP值分别提高5.4%、5.5%和6.28%。所提算法在模型轻量化和检测精度方面优势显著,为茶叶智能化采摘的嵌入式硬件部署提供有效解决方案。 展开更多
关键词 茶叶嫩芽识别 ad-yolox-nano算法 注意力机制 深度可分离卷积
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部