The grown conditions of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were investigated,and then experiments were conducted to research the bioleaching behaviors of crude ore of copper sulfide and h...The grown conditions of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were investigated,and then experiments were conducted to research the bioleaching behaviors of crude ore of copper sulfide and hand-picked concentrates of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans.The experimental results show that the bacteria grow best when the temperature is(30±1) °C and the pH value is 2.0.The bacteria concentration is 2.24×107 mL-1 in this condition.It is found that the copper extraction yield is affected by the inoculum size and the pulp density and the extraction yield increases as the inoculum size grows.The bioleaching rates reach their highest point in sulfide copper and chalcopyrite with a pulp density of 5% and 10%,respectively.Column flotation experiments of low-grade copper sulfide ores show that the bioleaching recovery reaches nearly 45% after 75 days.展开更多
Six strains of moderately thermophilic sulfur-oxidizing bacteria were isolated from several different typical environments in China. The identities of the isolates were confirmed by analyses of their 16S rRNA genes, a...Six strains of moderately thermophilic sulfur-oxidizing bacteria were isolated from several different typical environments in China. The identities of the isolates were confirmed by analyses of their 16S rRNA genes, and some key physiological traits. The isolates are Gram negative, rod-shaped bacteria, their optimal temperature and pH value for growth are 45-50℃ and 2.5-3.5 respectively. They are autotrophic and used elemental sulfur, sodium thiosulfate and potassium tetrathionate as electron donor, while a little glucose stimulated their growth. 16S rDNA sequences analysis reveals that the strains are phylogenetically clustered to Acidithiobacillus caldus.展开更多
Quorum sensing is one kind of cell-to-cell signalling system among microorganisms that works in response to their population density via autoinducers exemplified by AHL and oligopeptides. In this study, fourteen AHL d...Quorum sensing is one kind of cell-to-cell signalling system among microorganisms that works in response to their population density via autoinducers exemplified by AHL and oligopeptides. In this study, fourteen AHL derivatives were synthesised by a chemical synthesis method, and two types of AHL derivatives were measured and screened by crystal violet staining assay, which have more obvious inhibitory effects on A. ferrooxidans biofilms under arsenic environment. Their structures were verified through IR and NMR identification. The morphological changes of A. ferrooxidans under the influence of the AHL derivatives were compared. In addition, the effects of AHL derivatives(0.1 μg/mL and 1 μg/mL) on membrane formation of A. ferrooxidans under high concentration of arsenic resistance(1,600 mg/L) were explored. Solid experimental data firstly showed that a portion of logarithmic microorganisms were ruptured under the effect of high arsenic concentration. Secondly, the volume of the cell shrank and the number of extracellular polymeric substances decreased after the addition of the AHL derivatives at high concentrations. Therefore, we found here that two derivatives used at concentrations of 0.1 μg/mL and 1 μg/m L accompanied with high concentration of arsenic can both effectively restrict biofilms formation by A. ferrooxidans.展开更多
Sulfide oxidation by microbial activities play an important role in the release of heavy metals. An important source of contamination and formation of AMD is the heavy metals convey to soil, rivulet and groundwater. P...Sulfide oxidation by microbial activities play an important role in the release of heavy metals. An important source of contamination and formation of AMD is the heavy metals convey to soil, rivulet and groundwater. Pyrite is a commonly sulfide minerals in mine wastes, so it is vitally to prove up the microbial oxidation process.展开更多
The acid bio-leaching process of vanadium extraction from clay vanadium water-leached residue was studied and the effect of the performance of iron transformation was investigated.Acidithiobacillus ferrooxidans affect...The acid bio-leaching process of vanadium extraction from clay vanadium water-leached residue was studied and the effect of the performance of iron transformation was investigated.Acidithiobacillus ferrooxidans affects the dissolution of vanadium through the catalytic effect on Fe^3+/Fe^2+couple and material exchange.The passivation of iron settling correlates with ferrous ion content in bio-leaching solution.In medium containing A.ferrooxidans and Fe(Ⅲ),the increment in Fe(Ⅱ)concentration leads to the formation of jarosite,generating a decline in vanadium extraction efficiency.Analysis of cyclic voltammetry shows that Fe(Ⅱ)ion is apt to be oxidized and translated into precipitate by A.ferrooxidans,which strongly adsorbed to the surface of the residue.Fe(Ⅲ)ion promotes the vanadium extraction due to its oxidizing activity.Admixing A.ferrooxidans to Fe(Ⅲ)medium elevates the reduction of low valence state vanadium and facilitates the exchange of substance between minerals and solution.This motivates 3.8%and 21.8%increments in recovery ratio and leaching rate of vanadium compared to the Fe(Ⅲ)exclusive use,respectively.Moreover,Fe(Ⅱ)ion impacts vanadium extraction slightly in sterile medium but negatively influences vanadium leaching in the presence of bacteria.展开更多
The gene iscS-3 from ,4cidithiobacillus ferrooxidans may play a central role in the delivery of sulfur to a variety of metabolic pathways in this organism. For insight into the sulfur metabolic mechanism of the bacter...The gene iscS-3 from ,4cidithiobacillus ferrooxidans may play a central role in the delivery of sulfur to a variety of metabolic pathways in this organism. For insight into the sulfur metabolic mechanism of the bacteria, an integral three-dimensional (3D) molecular structure of the protein encoded by this gene was built by homology modeling techniques, refined by molecular dynamics simulations, assessed by PROFILE-3D and PROSTAT programs and further used to search bind sites, carry out flexible docking with cofactor pyridoxal 5'-phosphate(PLP) and substrate cysteine and hereby detect its key residues. Through these procedures, the detail conformations of PLP-IscS(P-I) and cysteine-PLP-IscS(C-P-I) complexes were obtained. In P-I complex, the residues of Lys208, His106, Thr78, Ser205, His207, Asp182 and Gln185 have large interaction energies and/or hydrogen bonds fixation with PLP. In C-P-I complex, the amino group in cysteine is very near His106, Lys208 and PLP, the interaction energies for cysteine with them are very high. The above results are well consistent with those experimental facts of the homologues from other sources. Interestingly, the four residues of Glul05, Glu79, Ser203 and Hisl80 in P-I docking and the residue of Lys213 in C-P-I docking also have great interaction energies, which are fitly conservation in IscSs from all kinds of sources but have not been identified before. From these results, this gene can be confirmed at 3D level to encode the iron-sulfur cluster assembly protein IscS and subsequently play a sulfur traffic role. Furthermore, the substrate cysteine can be presumed to be effectively recruited into the active site. Finally, the above detected key residues can be conjectured to be directly responsible for the bind and/or catalysis of PLP and cysteine.展开更多
The gene sod in Acidithiobacillusferrooxidans may play a crucial role in its tolerance to the extremely acidic, toxic and oxidative environment of bioleaching. For insight into the anti-toxic mechanism of the bacteria...The gene sod in Acidithiobacillusferrooxidans may play a crucial role in its tolerance to the extremely acidic, toxic and oxidative environment of bioleaching. For insight into the anti-toxic mechanism of the bacteria, a three-dimensional (3D) molecular structure of the protein encoded by this gene was built by homology modeling techniques, refined by molecular dynamics simulations, assessed by PROFILE-3D and PROSTAT programs and its key residues were further detected by evolutionary trace analysis. Through these procedures, some trace residues were identified and spatially clustered. Among them, the residues of Asn38, Glyl03 and Glul61 are randomly scattered throughout the mapped structure; interestingly, the other residues are all distinctly clustered in a subgroup near Fe atom. From these results, this gene can be confirmed at 3D level to encode the Fe-depending superoxide dismutase and subsequently play an anti-toxic role. Furthermore, the detected key residues around Fe binding site can be conjectured to be directly responsible for Fe binding and catalytic function.展开更多
To reveal the low growth rate of Acidithiobacillus ferrooxidans, a stochastic growth model was proposed to analyze growth curves of these bacteria in a batch culture. An algorithm was applied to simulate the bacteria ...To reveal the low growth rate of Acidithiobacillus ferrooxidans, a stochastic growth model was proposed to analyze growth curves of these bacteria in a batch culture. An algorithm was applied to simulate the bacteria population during lag and exponential phase. The results show that the model moderately fits the experimental data. Further, the mean growth constant (K) of growth curves is obtained by fitting the logarithm of the simulating population data versus the generation numbers with the different initial population number (N0) and initial mean activity of population (A0). When No is 300 and 700 respectively, the discrepancy of K value is only 0.91%, however, A0 is 0.34 and 0.38 respectively, the discrepancy of K value is 19.53%. It suggests that the effect of A0 on the lag phase exceeds No, though both parameters could shorten the lag phase by increasing their values.展开更多
China has accumulated massive fine grained copper mine tailings stocks because of the past mining activities in this area. The tailings contain a variety of heavy metals, and the mass percent of Cu, which is one of th...China has accumulated massive fine grained copper mine tailings stocks because of the past mining activities in this area. The tailings contain a variety of heavy metals, and the mass percent of Cu, which is one of the main contaminants in tailings, is up to 0.2601% (analysis by XRF). The Cu can pollute soil and groundwater by rain leaching in the form of Cu(Ⅱ), furthermore ,the fine grained copper-ore-tailings can contaminant larger area by wind for its small granularity ( < 74 μm). The main cause of weathering of mine tailings is due to oxidative dissolution of sulfides. Microorganisms, such as Acidithiobacillus ferrooxidans, play an important role in weathering. These bacteria attach to exposed to mineral surfaces by excreting extracellular polymers and oxidize the sulfide mineral. Some of these bacteria also oxidize Fe2+ to Fe3+ which can chemically oxidize sulfide minerals. These reactions produce voluminous quantities of acid mine drainage and heavy metals which are harmful to the environment and human healthy. This study aims at finding the weathering effects of A. ferrooxidans to Cu(II) pollution of fine grained copper mine tailings, and our experiment applied indigenous A. ferrooxidans FJ-01 to leach the tailings. The optimum test parameters were obtained using shaking flask experiment and SEM observation under the following experimental conditions: 39 days residence time, pulp density 1%-15% (1%, 5% and 15%), 30℃, 120 rpm, pH between 1-3 and redox potential between 400-650 mV. The test results show that the leaching rate of Cu reached 43.1% when the pulp density was 1% after 33 days and kept invariant till the end of the test. In addition, the leaching rate of Cu will decrease as the increase of pulp density, and the maximum rate of 15% pulp density was only 12.5%. From the SEM, it can be seen that the fine grain of tailings flocculated to conglobation under the action of bacterial leaching.展开更多
PCR-based DNA fingerprinting, REP-PCR(repetitive element PCR), RAPD(randomly amplified polymorphic DNA) and16 S r DNA sequence analyses were used to characterize 23 Acidithiobacillus ferrooxidans strains isolated from...PCR-based DNA fingerprinting, REP-PCR(repetitive element PCR), RAPD(randomly amplified polymorphic DNA) and16 S r DNA sequence analyses were used to characterize 23 Acidithiobacillus ferrooxidans strains isolated from different environments.(GTG)5 and BOXA1 R primer were selected for REP-PCR. Twenty arbitrary primers were used for RAPD to acquire DNA profiles from A. ferrooxidans. Both RAPD and REP-PCR produce complex banding patterns and show good discriminatory ability in differentiating closely related strains of A. ferrooxidans. The strains are clustered into 4 or 5 major groups and reveal genomic diversity using(GTG)5-PCR, BOX-PCR and RAPD analysis. Phylogenetic tree based on 16 S r DNA sequences of 23 strains and related strains shows that they are clustered into two distinct groups. Twelve strains are highly related to a new Acidithiobacillus named Acidithiobacillus ferrivorans. The results indicate that PCR-based methods are effective in revealing genetic diversity among A. ferrooxidans.展开更多
With the growing awareness of environmental protection and the increasing demand for rare earth elements(REEs),it has become necessary to efficiently remove and recover REEs from mine wastewater.In this study,jarosite...With the growing awareness of environmental protection and the increasing demand for rare earth elements(REEs),it has become necessary to efficiently remove and recover REEs from mine wastewater.In this study,jarosite(Jar)and schwertmannite(Sch)were biosynthesized using Acidithiobacillus ferrooxidans for the adsorption of REEs.Additionally,the adsorption capacities of Jar and Sch for La^(3+),Ce^(3+),Pr^(3+),Nd^(3+),Sm^(3+),Gd^(3+),Dy^(3+),and Y^(3+)in mine wastewater were improved by mechanical activation.XRD,FTIR,BET,and SEM-EDS analyses revealed that mechanical activation did not alter the phase of the material,but increased the amount of surface-OH and SO42−groups,as well as the specific surface area.This significantly enhanced the adsorption performance of Jar and Sch for REEs.The optimum adsorption time and pH were determined through batch adsorption experiments.Besides,the adsorption kinetics were studied and found to align well with the pseudo-second-order model.Furthermore,the thermodynamic parameters(ΔG^(Θ),ΔH^(Θ)andΔS^(Θ))and adsorption isotherms were analyzed.The results indicated that mechanically activated schwertmannite(M-Sch)exhibited superior adsorption performance for REEs compared to mechanically activated jarosite(M-Jar).Moreover,M-Sch was reusable and exhibited high adsorption efficiency of REEs in actual mine wastewater,exceeding 92%.展开更多
The corrosion behavior of the acidophilic sulfur-oxidizing microorganism(ASOM)Acidithiobacillusthiooxidans(A.thiooxidans)on mortar was investigated for changes of medium and mortar,as well as for weight lossand surfac...The corrosion behavior of the acidophilic sulfur-oxidizing microorganism(ASOM)Acidithiobacillusthiooxidans(A.thiooxidans)on mortar was investigated for changes of medium and mortar,as well as for weight lossand surface morphology of mortar specimens.Weight loss analysis showed that mortar weight was reduced by(15.1±2.2)%after 56 d.Morphological surface analysis of mortar specimens showed weakly structured fibrous substances with2−100μm in size.The pH variations of the mortar surface and medium indicated that biogenic sulfuric acid had beenproduced by A.thiooxidans.The results prove that A.thiooxidans accelerated concrete corrosion and caused concretefailure.展开更多
基金Project(2012AA061501)supported by the National High-tech Research and Development Program of ChinaProject(20120162120010)supported by the Research Fund for the Doctoral Program of Higher Education of China+2 种基金Project(NCET-13-0595)supported by the program for New Century Excellent Talents in University of ChinaProject(51374248)supported by the National Natural Science Foundation of ChinaProject(2010CB630905)supported by the National Key Basic Research Program of China
文摘The grown conditions of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were investigated,and then experiments were conducted to research the bioleaching behaviors of crude ore of copper sulfide and hand-picked concentrates of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans.The experimental results show that the bacteria grow best when the temperature is(30±1) °C and the pH value is 2.0.The bacteria concentration is 2.24×107 mL-1 in this condition.It is found that the copper extraction yield is affected by the inoculum size and the pulp density and the extraction yield increases as the inoculum size grows.The bioleaching rates reach their highest point in sulfide copper and chalcopyrite with a pulp density of 5% and 10%,respectively.Column flotation experiments of low-grade copper sulfide ores show that the bioleaching recovery reaches nearly 45% after 75 days.
基金Project (50321402) supported by the National Natural Science Foundation of China Project(2004CB619204) supported by the State Basic Research Development Program of China Project (DY105-02-04-05) supported by the China Ocean Mineral Resources Research and Development Association
文摘Six strains of moderately thermophilic sulfur-oxidizing bacteria were isolated from several different typical environments in China. The identities of the isolates were confirmed by analyses of their 16S rRNA genes, and some key physiological traits. The isolates are Gram negative, rod-shaped bacteria, their optimal temperature and pH value for growth are 45-50℃ and 2.5-3.5 respectively. They are autotrophic and used elemental sulfur, sodium thiosulfate and potassium tetrathionate as electron donor, while a little glucose stimulated their growth. 16S rDNA sequences analysis reveals that the strains are phylogenetically clustered to Acidithiobacillus caldus.
基金Project(31660026)supported by the National Natural Science Foundation of ChinaProject(lzujbky-2016-152)supported by the National Basic Research Program of China
文摘Quorum sensing is one kind of cell-to-cell signalling system among microorganisms that works in response to their population density via autoinducers exemplified by AHL and oligopeptides. In this study, fourteen AHL derivatives were synthesised by a chemical synthesis method, and two types of AHL derivatives were measured and screened by crystal violet staining assay, which have more obvious inhibitory effects on A. ferrooxidans biofilms under arsenic environment. Their structures were verified through IR and NMR identification. The morphological changes of A. ferrooxidans under the influence of the AHL derivatives were compared. In addition, the effects of AHL derivatives(0.1 μg/mL and 1 μg/mL) on membrane formation of A. ferrooxidans under high concentration of arsenic resistance(1,600 mg/L) were explored. Solid experimental data firstly showed that a portion of logarithmic microorganisms were ruptured under the effect of high arsenic concentration. Secondly, the volume of the cell shrank and the number of extracellular polymeric substances decreased after the addition of the AHL derivatives at high concentrations. Therefore, we found here that two derivatives used at concentrations of 0.1 μg/mL and 1 μg/m L accompanied with high concentration of arsenic can both effectively restrict biofilms formation by A. ferrooxidans.
文摘Sulfide oxidation by microbial activities play an important role in the release of heavy metals. An important source of contamination and formation of AMD is the heavy metals convey to soil, rivulet and groundwater. Pyrite is a commonly sulfide minerals in mine wastes, so it is vitally to prove up the microbial oxidation process.
基金Project(DY135-B2-15) supported by the China Ocean Mineral Resource R&D AssociationProject(2015ZX07205-003) supported by Major Science and Technology Program for Water Pollution Control and Treatment,ChinaProjects(21176242,21176026) supported by the National Natural Science Foundation of China
文摘The acid bio-leaching process of vanadium extraction from clay vanadium water-leached residue was studied and the effect of the performance of iron transformation was investigated.Acidithiobacillus ferrooxidans affects the dissolution of vanadium through the catalytic effect on Fe^3+/Fe^2+couple and material exchange.The passivation of iron settling correlates with ferrous ion content in bio-leaching solution.In medium containing A.ferrooxidans and Fe(Ⅲ),the increment in Fe(Ⅱ)concentration leads to the formation of jarosite,generating a decline in vanadium extraction efficiency.Analysis of cyclic voltammetry shows that Fe(Ⅱ)ion is apt to be oxidized and translated into precipitate by A.ferrooxidans,which strongly adsorbed to the surface of the residue.Fe(Ⅲ)ion promotes the vanadium extraction due to its oxidizing activity.Admixing A.ferrooxidans to Fe(Ⅲ)medium elevates the reduction of low valence state vanadium and facilitates the exchange of substance between minerals and solution.This motivates 3.8%and 21.8%increments in recovery ratio and leaching rate of vanadium compared to the Fe(Ⅲ)exclusive use,respectively.Moreover,Fe(Ⅱ)ion impacts vanadium extraction slightly in sterile medium but negatively influences vanadium leaching in the presence of bacteria.
基金Project(2004CB619201) supported by the National Basic Research Program of China Project(50321402) supported by the National Natural Science Foundation of China
文摘The gene iscS-3 from ,4cidithiobacillus ferrooxidans may play a central role in the delivery of sulfur to a variety of metabolic pathways in this organism. For insight into the sulfur metabolic mechanism of the bacteria, an integral three-dimensional (3D) molecular structure of the protein encoded by this gene was built by homology modeling techniques, refined by molecular dynamics simulations, assessed by PROFILE-3D and PROSTAT programs and further used to search bind sites, carry out flexible docking with cofactor pyridoxal 5'-phosphate(PLP) and substrate cysteine and hereby detect its key residues. Through these procedures, the detail conformations of PLP-IscS(P-I) and cysteine-PLP-IscS(C-P-I) complexes were obtained. In P-I complex, the residues of Lys208, His106, Thr78, Ser205, His207, Asp182 and Gln185 have large interaction energies and/or hydrogen bonds fixation with PLP. In C-P-I complex, the amino group in cysteine is very near His106, Lys208 and PLP, the interaction energies for cysteine with them are very high. The above results are well consistent with those experimental facts of the homologues from other sources. Interestingly, the four residues of Glul05, Glu79, Ser203 and Hisl80 in P-I docking and the residue of Lys213 in C-P-I docking also have great interaction energies, which are fitly conservation in IscSs from all kinds of sources but have not been identified before. From these results, this gene can be confirmed at 3D level to encode the iron-sulfur cluster assembly protein IscS and subsequently play a sulfur traffic role. Furthermore, the substrate cysteine can be presumed to be effectively recruited into the active site. Finally, the above detected key residues can be conjectured to be directly responsible for the bind and/or catalysis of PLP and cysteine.
基金Project(2004CB619201) supported by the National Basic Research Program of ChinaProject (50321402) supported by the National Natural Science Foundation of China
文摘The gene sod in Acidithiobacillusferrooxidans may play a crucial role in its tolerance to the extremely acidic, toxic and oxidative environment of bioleaching. For insight into the anti-toxic mechanism of the bacteria, a three-dimensional (3D) molecular structure of the protein encoded by this gene was built by homology modeling techniques, refined by molecular dynamics simulations, assessed by PROFILE-3D and PROSTAT programs and its key residues were further detected by evolutionary trace analysis. Through these procedures, some trace residues were identified and spatially clustered. Among them, the residues of Asn38, Glyl03 and Glul61 are randomly scattered throughout the mapped structure; interestingly, the other residues are all distinctly clustered in a subgroup near Fe atom. From these results, this gene can be confirmed at 3D level to encode the Fe-depending superoxide dismutase and subsequently play an anti-toxic role. Furthermore, the detected key residues around Fe binding site can be conjectured to be directly responsible for Fe binding and catalytic function.
基金Project(50321402) supported by the Science Fund for Creative Research Groups of China project(2004CB619204) sup-ported by the National Key Fundamental Research Development Programof China
文摘To reveal the low growth rate of Acidithiobacillus ferrooxidans, a stochastic growth model was proposed to analyze growth curves of these bacteria in a batch culture. An algorithm was applied to simulate the bacteria population during lag and exponential phase. The results show that the model moderately fits the experimental data. Further, the mean growth constant (K) of growth curves is obtained by fitting the logarithm of the simulating population data versus the generation numbers with the different initial population number (N0) and initial mean activity of population (A0). When No is 300 and 700 respectively, the discrepancy of K value is only 0.91%, however, A0 is 0.34 and 0.38 respectively, the discrepancy of K value is 19.53%. It suggests that the effect of A0 on the lag phase exceeds No, though both parameters could shorten the lag phase by increasing their values.
文摘China has accumulated massive fine grained copper mine tailings stocks because of the past mining activities in this area. The tailings contain a variety of heavy metals, and the mass percent of Cu, which is one of the main contaminants in tailings, is up to 0.2601% (analysis by XRF). The Cu can pollute soil and groundwater by rain leaching in the form of Cu(Ⅱ), furthermore ,the fine grained copper-ore-tailings can contaminant larger area by wind for its small granularity ( < 74 μm). The main cause of weathering of mine tailings is due to oxidative dissolution of sulfides. Microorganisms, such as Acidithiobacillus ferrooxidans, play an important role in weathering. These bacteria attach to exposed to mineral surfaces by excreting extracellular polymers and oxidize the sulfide mineral. Some of these bacteria also oxidize Fe2+ to Fe3+ which can chemically oxidize sulfide minerals. These reactions produce voluminous quantities of acid mine drainage and heavy metals which are harmful to the environment and human healthy. This study aims at finding the weathering effects of A. ferrooxidans to Cu(II) pollution of fine grained copper mine tailings, and our experiment applied indigenous A. ferrooxidans FJ-01 to leach the tailings. The optimum test parameters were obtained using shaking flask experiment and SEM observation under the following experimental conditions: 39 days residence time, pulp density 1%-15% (1%, 5% and 15%), 30℃, 120 rpm, pH between 1-3 and redox potential between 400-650 mV. The test results show that the leaching rate of Cu reached 43.1% when the pulp density was 1% after 33 days and kept invariant till the end of the test. In addition, the leaching rate of Cu will decrease as the increase of pulp density, and the maximum rate of 15% pulp density was only 12.5%. From the SEM, it can be seen that the fine grain of tailings flocculated to conglobation under the action of bacterial leaching.
基金Project(2010CB630901)supported by the National Basic Research Program of China
文摘PCR-based DNA fingerprinting, REP-PCR(repetitive element PCR), RAPD(randomly amplified polymorphic DNA) and16 S r DNA sequence analyses were used to characterize 23 Acidithiobacillus ferrooxidans strains isolated from different environments.(GTG)5 and BOXA1 R primer were selected for REP-PCR. Twenty arbitrary primers were used for RAPD to acquire DNA profiles from A. ferrooxidans. Both RAPD and REP-PCR produce complex banding patterns and show good discriminatory ability in differentiating closely related strains of A. ferrooxidans. The strains are clustered into 4 or 5 major groups and reveal genomic diversity using(GTG)5-PCR, BOX-PCR and RAPD analysis. Phylogenetic tree based on 16 S r DNA sequences of 23 strains and related strains shows that they are clustered into two distinct groups. Twelve strains are highly related to a new Acidithiobacillus named Acidithiobacillus ferrivorans. The results indicate that PCR-based methods are effective in revealing genetic diversity among A. ferrooxidans.
基金Project(2022YFC2105300) supported by the National Key Research and Development Program of ChinaProject(52274288) supported by the National Natural Science Foundation of China。
文摘With the growing awareness of environmental protection and the increasing demand for rare earth elements(REEs),it has become necessary to efficiently remove and recover REEs from mine wastewater.In this study,jarosite(Jar)and schwertmannite(Sch)were biosynthesized using Acidithiobacillus ferrooxidans for the adsorption of REEs.Additionally,the adsorption capacities of Jar and Sch for La^(3+),Ce^(3+),Pr^(3+),Nd^(3+),Sm^(3+),Gd^(3+),Dy^(3+),and Y^(3+)in mine wastewater were improved by mechanical activation.XRD,FTIR,BET,and SEM-EDS analyses revealed that mechanical activation did not alter the phase of the material,but increased the amount of surface-OH and SO42−groups,as well as the specific surface area.This significantly enhanced the adsorption performance of Jar and Sch for REEs.The optimum adsorption time and pH were determined through batch adsorption experiments.Besides,the adsorption kinetics were studied and found to align well with the pseudo-second-order model.Furthermore,the thermodynamic parameters(ΔG^(Θ),ΔH^(Θ)andΔS^(Θ))and adsorption isotherms were analyzed.The results indicated that mechanically activated schwertmannite(M-Sch)exhibited superior adsorption performance for REEs compared to mechanically activated jarosite(M-Jar).Moreover,M-Sch was reusable and exhibited high adsorption efficiency of REEs in actual mine wastewater,exceeding 92%.
基金Project(42476209)supported by the National Natural Science Foundation of ChinaProject(2023GXNSFBA026252)supported by the Youth Science Foundation of Guangxi Province,China+2 种基金Project(ZR2023MD024)supported by the Natural Science Foundation of Shandong Province,ChinaProject(JC22022104)supported by the Natural Science Foundation of Nantong,ChinaProject(2023VEA0007)supported by the Chinese Academy of Sciences President’s International Fellowship Initiative。
文摘The corrosion behavior of the acidophilic sulfur-oxidizing microorganism(ASOM)Acidithiobacillusthiooxidans(A.thiooxidans)on mortar was investigated for changes of medium and mortar,as well as for weight lossand surface morphology of mortar specimens.Weight loss analysis showed that mortar weight was reduced by(15.1±2.2)%after 56 d.Morphological surface analysis of mortar specimens showed weakly structured fibrous substances with2−100μm in size.The pH variations of the mortar surface and medium indicated that biogenic sulfuric acid had beenproduced by A.thiooxidans.The results prove that A.thiooxidans accelerated concrete corrosion and caused concretefailure.