In this paper,based on the topological description method,the kinematic and dynamic equations of the projectile flight and projectile-artillery coupling system during the whole process of firing are constructed.The fa...In this paper,based on the topological description method,the kinematic and dynamic equations of the projectile flight and projectile-artillery coupling system during the whole process of firing are constructed.The factors that can affect the projectile burst points,namely the state parameters of the projectile on the muzzle and state parameters of the barrel muzzle,as well as the factors that affect the barrel muzzle state parameters,are analyzed.On this basis,the design principle of artillery firing accuracy is proposed.The error analysis and the corresponding inverse problem,the extraction method of key parameters affecting artillery implicated motion,the conformal and control method of rotating band are analyzed and presented.Finally,the presented method is verified through a vehicle mounted howitzer case,and the muzzle state parameter interval is obtained meeting the given firing accuracy.In addition,the sensitivity analysis of artillery parameters shows that the less the correlation between the parameters and the barrel,the less the influence on the projectile implicated motion.The analysis of the coupling effect between rifling and the rotating band shows that the uniform rifling is the optimal form for the conformal of the rotating band during firing.展开更多
The Ice,Cloud and Land Elevation Satellite-2(ICESat-2),a new spaceborne light detection and ranging(LiDAR)system,was successfully launched on September 15,2018.The ICESat-2 data increase the types of spaceborne LiDAR ...The Ice,Cloud and Land Elevation Satellite-2(ICESat-2),a new spaceborne light detection and ranging(LiDAR)system,was successfully launched on September 15,2018.The ICESat-2 data increase the types of spaceborne LiDAR data archive and provide new control point data for large-scale topographic mapping and geodetic surveying.However,the accuracy of the ATL 08 terrain estimates has not been fully evaluated on a large scale and in complex terrain conditions.This article aims to quantitatively assess the accuracy of ICESat-2 ATL 08 terrain estimates.Firstly,the ICESat-2 ATL 08 terrain estimates were compared with the high-precision airborne LiDAR digital terrain model(DTM),and impacts of acquisition time,vegetation cover type,terrain slope,and season change on the terrain estimation accuracy were analyzed.We get the following conclusions from the analysis:1)the mean and RMSE of the terrain estimates of day acquisitions are 0.22 m and 0.59 m higher than that of night acquisitions;2)the accuracy of the ATL 08 terrain estimates acquired in vegetated areas is lower than those in non-vegetated areas;3)the accuracy of the ATL 08 terrain estimates is inversely proportional to the slope,and the elevation error increases significantly when the terrain slope is larger than 30°;4)in the non-vegetation covered area,the accuracy of the ATL 08 terrain estimates of summer and winter acquisitions has no obvious discrepancy,but in vegetated area,the accuracy of winter acquisitions is significantly better than that of summer acquisitions.This research provides references for the selection and application of ICESat-2 data.展开更多
This paper proposes a novel method to predict the spur gear pair’s static transmission error based on the accuracy grade,in which manufacturing errors(MEs),assembly errors(AEs),tooth deflections(TDs)and profile modif...This paper proposes a novel method to predict the spur gear pair’s static transmission error based on the accuracy grade,in which manufacturing errors(MEs),assembly errors(AEs),tooth deflections(TDs)and profile modifications(PMs)are considered.For the prediction,a discrete gear model for generating the error tooth profile based on the ISO accuracy grade is presented.Then,the gear model and a tooth deflection model for calculating the tooth compliance on gear meshing are coupled with the transmission error model to make the prediction by checking the interference status between gear and pinion.The prediction method is validated by comparison with the experimental results from the literature,and a set of cases are simulated to study the effects of MEs,AEs,TDs and PMs on the static transmission error.In addition,the time-varying backlash caused by both MEs and AEs,and the contact ratio under load conditions are also investigated.The results show that the novel method can effectively predict the range of the static transmission error under different accuracy grades.The prediction results can provide references for the selection of gear design parameters and the optimization of transmission performance in the design stage of gear systems.展开更多
Time-limited dispatching(TLD)analysis of the full authority digital engine control(FADEC)systems is an important part of the aircraft system safety analysis and a necessary task for the certification of commercial air...Time-limited dispatching(TLD)analysis of the full authority digital engine control(FADEC)systems is an important part of the aircraft system safety analysis and a necessary task for the certification of commercial aircraft and aeroengines.In the time limited dispatch guidance document ARP5107B,a single-fault Markov model(MM)approach is proposed for TLD analysis.However,ARP5107B also requires that the loss of thrust control(LOTC)rate error calculated by applying the single-fault MM must be less than 5%when performing airworthiness certification.Firstly,the sources of accuracy errors in three kinds of MM are analyzed and specified through a case study of the general FADEC system,and secondly a two-fault MM considering maintenance policy is established through analyzing and calculating the expected repair time when two related faults happen.Finally,a specific FADEC system is given to study on the influence factors of accuracy error in the single-fault MM,and the results show that the accuracy error of the single-fault MM decreases with the increase of short or long prescribed dispatch time,and the range values of short time(ST)and long time(LT)are determined to satisfy the requirement of accuracy error within 5%.展开更多
The evaluation method and its accuracy for evaluating complex systems are considered. In order to evaluate accurately complex systems, the existed evaluating methods are simply analyzed, and a new comprehensive evalua...The evaluation method and its accuracy for evaluating complex systems are considered. In order to evaluate accurately complex systems, the existed evaluating methods are simply analyzed, and a new comprehensive evaluating method is developed. The new method is integration of Delphi approach, analytic hierarchy process, gray interconnect degree and fuzzy evaluation (DHGF). Its theory foundation is the meta-synthesis methodology from qualitative analysis to quantitative analysis. According to fuzzy set approach, using the methods of concordance of evaluation, redundant verify, double models redundant, and limitations of the method etc, the accuracy of evaluating method of DHGF is estimated, and a practical example is given. The result shows that using the method to evaluate complex system projects is feasible and credible.展开更多
The higher order displacement discontinuity method(HODDM) utilizing special crack tip elements has been used in the solution of linear elastic fracture mechanics(LEFM) problems. The paper has selected several example ...The higher order displacement discontinuity method(HODDM) utilizing special crack tip elements has been used in the solution of linear elastic fracture mechanics(LEFM) problems. The paper has selected several example problems from the fracture mechanics literature(with available analytical solutions) including center slant crack in an infinite and finite body, single and double edge cracks, cracks emanating from a circular hole. The numerical values of Mode Ⅰ and Mode Ⅱ SIFs for these problems using HODDM are in excellent agreement with analytical results(reaching up to 0.001% deviation from their analytical results). The HODDM is also compared with the XFEM and a modified XFEM results. The results show that the HODDM needs a considerably lower computational effort(with less than 400 nodes) than the XFEM and the modified XFEM(which needs more than 10000 nodes) to reach a much higher accuracy. The proposed HODDM offers higher accuracy and lower computation effort for a wide range of problems in LEFM.展开更多
The influences of instrumental errors, measurement errors, and the fluctuation of refraction angles, etc., on the observation accuracy of vertical angles are analysed. A new target used to observe the vertical angle w...The influences of instrumental errors, measurement errors, and the fluctuation of refraction angles, etc., on the observation accuracy of vertical angles are analysed. A new target used to observe the vertical angle was designed. Some measures are suggested to reduce the errors in observing vertical angles. They are proved to be effective by experiments.展开更多
Due to the intense vibration durirLg launching and rigorous orbital temperature environment, the kinematic parameters of space robot may be largely deviated from their nominal parameters. The disparity will cause the ...Due to the intense vibration durirLg launching and rigorous orbital temperature environment, the kinematic parameters of space robot may be largely deviated from their nominal parameters. The disparity will cause the real pose (including position and orientation) of the end effector not to match the desired one, and further hinder the space robot from performing the scheduled mission. To improve pose accuracy of space robot, a new self-calibration method using the distance measurement provided by a laser-ranger fixed on the end-effector is proposed. A distance-measurement model of the space robot is built according to the distance from the starting point of the laser beam to the intersection point at the declining plane. Based on the model, the cost function about the pose error is derived. The kinematic calibration is transferred to a non-linear system optimization problem, which is solved by the improved differential evolution (DE) algoritlun. A six-degree of freedom (6-DOF) robot is used as a practical simulation example, and the simulation results show: 1) A significant improvement of pose accuracy of space robot can be obtained by distance measurement only; 2) Search efficiency is increased by improved DE; 3) More calibration configurations may make calibration results better.展开更多
The range-velocity ambiguity caused by moving target influences on the ranging accuracy of a short-range millimeter wave radar greatly.A new method was presented in this paper to reduce the range-velocity ambiguity an...The range-velocity ambiguity caused by moving target influences on the ranging accuracy of a short-range millimeter wave radar greatly.A new method was presented in this paper to reduce the range-velocity ambiguity and improve the ranging accuracy by estimating parameters of the echo signal with fractional Fourier transform and self-correlation.And,a new quick searching algorithm was given also to increase the calculation speed.Compared to the Chinese remainder theorem method,the proposed method is excellent for its simplicity and reducing the computation complexity.The simulation results show its validity.展开更多
In the application of persistent scatterer interferometry(PSI),deformation information is extracted from persistent scatterer(PS)points.Thus,the density and position of PS points are critical for PSI.To increase the P...In the application of persistent scatterer interferometry(PSI),deformation information is extracted from persistent scatterer(PS)points.Thus,the density and position of PS points are critical for PSI.To increase the PS density,a time-series InSAR chain termed as"super-resolution persistent scatterer interferometry"(SR-PSI)is proposed.In this study,we investigate certain important properties of SR-PSI.First,we review the main workflow and dataflow of SR-PSI.It is shown that in the implementation of the Capon algorithm,the diagonal loading(DL)approach should be only used when the condition number of the covariance matrix is sufficiently high to reduce the discontinuities between the joint images.We then discuss the density and positioning accuracy of PS when compared with traditional PSI.The theory and experimental results indicate that SR-PSI can increase the PS density in urban areas.However,it is ineffective for the rural areas,which should be an important consideration for the engineering application of SR-PSI.Furthermore,we validate that the positioning accuracy of PS can be improved by SRPSI via simulations.展开更多
Mechanical components machined to high levels of ac cu racy are vital to achieve various functional requirements in engineering product s. In particular, the geometric accuracy of turned components play an important r...Mechanical components machined to high levels of ac cu racy are vital to achieve various functional requirements in engineering product s. In particular, the geometric accuracy of turned components play an important role in determining the form, fit and function of mechanical assembly requiremen ts. The geometric accuracy requirements of turned components are usually specifi ed in terms of roundness, straightness, cylindricity and concentricity. In pract ice, the accuracy specifications achievable are influenced by many factors such as component materials, production equipment, environmental factors, and machini ng process variables. While the sources of geometric errors due to materials, ma chinery and environment can be predicted to a large extent, the geometric accura cy due to the machining practice is unpredictable and difficult to determine. Since the fundamental geometric tolerances of work-pieces machined by tur ning a re sensitive to the cutting conditions, optimizing the cutting parameters such a s cutting speed, feed rate, and depth of cut is important for achieving the requ ired accuracy levels. Optimization studies of process variables in turning have not been well documented in the literature. Some experimental studies show the e ffect of process variables like cutting speed, feed rate and depth of cut on sur face roughness, production rate, production cost, etc. However, there have been no in-depth studies of the influence of the process variables on mechanical acc uracy related to the geometrical tolerances. In practice, a mechanical part usually consists of several geometrical features. For many mechanical parts, the geometric tolerances determine their functional characteristics. For example, diameter of a shaft and diameter of a hole decide the clearance of a cylindrical fit. The features of the cylindrical fit depend o n the dimensional tolerances of the size as well as several other geometrical to lerances like, roundness, cylindricity, and concentricity. In the study reported here, the dimensional and geometric tolerances achieved using turning experimen ts over a wide selection of cutting conditions will be used to analyze their inf luence on satisfying the functional requirements. The study will also show a met hodology of optimizing the process variables to achieve dimensional and geom etric tolerances to meet the requirements of specific functional features.展开更多
Objective To qualitatively assess the diagnostic performance of dynamic contrast enhancement(DCE),diffusionweighted imaging(DWI),and T2-weighted imaging(T2WI),alone or in combination,in the evaluation of breast cancer...Objective To qualitatively assess the diagnostic performance of dynamic contrast enhancement(DCE),diffusionweighted imaging(DWI),and T2-weighted imaging(T2WI),alone or in combination,in the evaluation of breast cancer.Methods We retrospectively reviewed the records of 394 consecutive patients with pathologically confirmed breast lesions who had undergone 3-T magnetic resonance imaging(MRI).The morphological characteristics of breast lesions were evaluated using DCE,DWI,and T2WI based on BI-RADS lexicon descriptors by trained radiologists.Patients were categorized into mass and non-mass groups based on MRI characteristics of the lesions,and the differences between benign and malignant lesions in each group were compared.Clinical prediction models for breast cancer diagnosis were constructed using logistic regression analysis.Diagnostic efficacies were compared using the area under the receiver operating characteristic curve(AUC)and DeLong test.Results For mass-like lesions,all the morphological parameters significantly differentiated benign and malignant lesions on consensus DCE,DWI,and T2WI(P<0.05).The combined method(DCE+DWI+T2WI)had a higher AUC(0.865)than any of the individual modality(DCE:0.786;DWI:0.793;T2WI:0.809)(P<0.05).For non-mass-like lesions,DWI signal intensity was a significant predictor of malignancy(P=0.036),but the model using DWI alone had a low AUC(0.669).Conclusion Morphological assessment using the combination of DCE,DWI,and T2WI provides better diagnostic value in differentiating benign and malignant breast mass-like lesions than assessment with only one of the modalities.展开更多
In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation o...In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.展开更多
The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by consideri...The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by considering the underwater tar-get as a mass point,as well as the observation system error,the traditional error model best estimation trajectory(EMBET)with little observed data and too many parameters can lead to the ill-condition of the parameter model.In this paper,a multi-station fusion system error model based on the optimal polynomial con-straint is constructed,and the corresponding observation sys-tem error identification based on improved spectral clustering is designed.Firstly,the reduced parameter unified modeling for the underwater target position parameters and the system error is achieved through the polynomial optimization.Then a multi-sta-tion non-oriented graph network is established,which can address the problem of the inaccurate identification for the sys-tem errors.Moreover,the similarity matrix of the spectral cluster-ing is improved,and the iterative identification for the system errors based on the improved spectral clustering is proposed.Finally,the comprehensive measured data of long baseline lake test and sea test show that the proposed method can accu-rately identify the system errors,and moreover can improve the positioning accuracy for the underwater target positioning.展开更多
The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms...The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms only use part of the target location, speed, and other information for correlation.In this paper, the artificial neural network method is used to establish the corresponding intelligent track correlation model and method according to the characteristics of swarm targets.Precisely, a route correlation method based on convolutional neural networks (CNN) and long short-term memory (LSTM)Neural network is designed. In this model, the CNN is used to extract the formation characteristics of UAV swarm and the spatial position characteristics of single UAV track in the formation,while the LSTM is used to extract the time characteristics of UAV swarm. Experimental results show that compared with the traditional algorithms, the algorithm based on CNN-LSTM neural network can make full use of multiple feature information of the target, and has better robustness and accuracy for swarm targets.展开更多
The influences of the mask wall angle on the current density distribution,shape of the evolving cavity and machining accuracy were investigated in electrochemical machining(ECM) by mask.A mathematical model was develo...The influences of the mask wall angle on the current density distribution,shape of the evolving cavity and machining accuracy were investigated in electrochemical machining(ECM) by mask.A mathematical model was developed to predict the shape evolution during the ECM by mask.The current density distribution is sensitive to mask wall angle.The evolution of cavity is determined by the current density distribution of evolving workpiece surface.The maximum depth is away from the center of holes machined,which leads to the island appearing at the center of cavity for mask wall angles greater than or equal to 90°(β≥90°).The experimental system was established and the simulation results were experimentally verified.The results indicate that the simulation results of cavity shape are consistent with the actual ones.The experiments also show that the repetition accuracy of matrix-hole for β≥90° is higher than that for β<90°.A hole taper is diminished,and the machining accuracy is improved with the mask wall angle increasing.展开更多
This paper studies the multi-sensor management problem for low earth orbit(LEO) infrared warning constellation used to track a midcourse missile. A covariance control approach, which selects sensor combinations or sub...This paper studies the multi-sensor management problem for low earth orbit(LEO) infrared warning constellation used to track a midcourse missile. A covariance control approach, which selects sensor combinations or subset based on the difference between the desired covariance matrix and the actual covariance of each target, is used for sensor management, including some matrix metrics to measure the differentia between two covariance matrices. Besides, to meet the requirements of the space based warning system, the original covariance control approach is improved. Simulation results demonstrate that the covariance control approach is able to provide a better tracking performance by providing a well-designed desired covariance and balance tracking performance goals with system demands.展开更多
基金This work was supported by the Natural Science Foundation of China(Grant No.11472137)the Fundamental Research Funds for the Central University(Grant No.309181A880 and 30919011204).
文摘In this paper,based on the topological description method,the kinematic and dynamic equations of the projectile flight and projectile-artillery coupling system during the whole process of firing are constructed.The factors that can affect the projectile burst points,namely the state parameters of the projectile on the muzzle and state parameters of the barrel muzzle,as well as the factors that affect the barrel muzzle state parameters,are analyzed.On this basis,the design principle of artillery firing accuracy is proposed.The error analysis and the corresponding inverse problem,the extraction method of key parameters affecting artillery implicated motion,the conformal and control method of rotating band are analyzed and presented.Finally,the presented method is verified through a vehicle mounted howitzer case,and the muzzle state parameter interval is obtained meeting the given firing accuracy.In addition,the sensitivity analysis of artillery parameters shows that the less the correlation between the parameters and the barrel,the less the influence on the projectile implicated motion.The analysis of the coupling effect between rifling and the rotating band shows that the uniform rifling is the optimal form for the conformal of the rotating band during firing.
基金Projects(41820104005,41904004,42030112)supported by the National Natural Science Foundation of China。
文摘The Ice,Cloud and Land Elevation Satellite-2(ICESat-2),a new spaceborne light detection and ranging(LiDAR)system,was successfully launched on September 15,2018.The ICESat-2 data increase the types of spaceborne LiDAR data archive and provide new control point data for large-scale topographic mapping and geodetic surveying.However,the accuracy of the ATL 08 terrain estimates has not been fully evaluated on a large scale and in complex terrain conditions.This article aims to quantitatively assess the accuracy of ICESat-2 ATL 08 terrain estimates.Firstly,the ICESat-2 ATL 08 terrain estimates were compared with the high-precision airborne LiDAR digital terrain model(DTM),and impacts of acquisition time,vegetation cover type,terrain slope,and season change on the terrain estimation accuracy were analyzed.We get the following conclusions from the analysis:1)the mean and RMSE of the terrain estimates of day acquisitions are 0.22 m and 0.59 m higher than that of night acquisitions;2)the accuracy of the ATL 08 terrain estimates acquired in vegetated areas is lower than those in non-vegetated areas;3)the accuracy of the ATL 08 terrain estimates is inversely proportional to the slope,and the elevation error increases significantly when the terrain slope is larger than 30°;4)in the non-vegetation covered area,the accuracy of the ATL 08 terrain estimates of summer and winter acquisitions has no obvious discrepancy,but in vegetated area,the accuracy of winter acquisitions is significantly better than that of summer acquisitions.This research provides references for the selection and application of ICESat-2 data.
基金Project(51675061)supported by the National Natural Science Foundation of China。
文摘This paper proposes a novel method to predict the spur gear pair’s static transmission error based on the accuracy grade,in which manufacturing errors(MEs),assembly errors(AEs),tooth deflections(TDs)and profile modifications(PMs)are considered.For the prediction,a discrete gear model for generating the error tooth profile based on the ISO accuracy grade is presented.Then,the gear model and a tooth deflection model for calculating the tooth compliance on gear meshing are coupled with the transmission error model to make the prediction by checking the interference status between gear and pinion.The prediction method is validated by comparison with the experimental results from the literature,and a set of cases are simulated to study the effects of MEs,AEs,TDs and PMs on the static transmission error.In addition,the time-varying backlash caused by both MEs and AEs,and the contact ratio under load conditions are also investigated.The results show that the novel method can effectively predict the range of the static transmission error under different accuracy grades.The prediction results can provide references for the selection of gear design parameters and the optimization of transmission performance in the design stage of gear systems.
基金supported by the National Natural Science Foundation of China(51705242)Shanghai Sailing Program(16YF1404900)the Fundamental Research Funds for the Central Universities(NS2015072)
文摘Time-limited dispatching(TLD)analysis of the full authority digital engine control(FADEC)systems is an important part of the aircraft system safety analysis and a necessary task for the certification of commercial aircraft and aeroengines.In the time limited dispatch guidance document ARP5107B,a single-fault Markov model(MM)approach is proposed for TLD analysis.However,ARP5107B also requires that the loss of thrust control(LOTC)rate error calculated by applying the single-fault MM must be less than 5%when performing airworthiness certification.Firstly,the sources of accuracy errors in three kinds of MM are analyzed and specified through a case study of the general FADEC system,and secondly a two-fault MM considering maintenance policy is established through analyzing and calculating the expected repair time when two related faults happen.Finally,a specific FADEC system is given to study on the influence factors of accuracy error in the single-fault MM,and the results show that the accuracy error of the single-fault MM decreases with the increase of short or long prescribed dispatch time,and the range values of short time(ST)and long time(LT)are determined to satisfy the requirement of accuracy error within 5%.
文摘The evaluation method and its accuracy for evaluating complex systems are considered. In order to evaluate accurately complex systems, the existed evaluating methods are simply analyzed, and a new comprehensive evaluating method is developed. The new method is integration of Delphi approach, analytic hierarchy process, gray interconnect degree and fuzzy evaluation (DHGF). Its theory foundation is the meta-synthesis methodology from qualitative analysis to quantitative analysis. According to fuzzy set approach, using the methods of concordance of evaluation, redundant verify, double models redundant, and limitations of the method etc, the accuracy of evaluating method of DHGF is estimated, and a practical example is given. The result shows that using the method to evaluate complex system projects is feasible and credible.
文摘The higher order displacement discontinuity method(HODDM) utilizing special crack tip elements has been used in the solution of linear elastic fracture mechanics(LEFM) problems. The paper has selected several example problems from the fracture mechanics literature(with available analytical solutions) including center slant crack in an infinite and finite body, single and double edge cracks, cracks emanating from a circular hole. The numerical values of Mode Ⅰ and Mode Ⅱ SIFs for these problems using HODDM are in excellent agreement with analytical results(reaching up to 0.001% deviation from their analytical results). The HODDM is also compared with the XFEM and a modified XFEM results. The results show that the HODDM needs a considerably lower computational effort(with less than 400 nodes) than the XFEM and the modified XFEM(which needs more than 10000 nodes) to reach a much higher accuracy. The proposed HODDM offers higher accuracy and lower computation effort for a wide range of problems in LEFM.
基金the National+4 种基金 Natural Science Foundation of China
文摘The influences of instrumental errors, measurement errors, and the fluctuation of refraction angles, etc., on the observation accuracy of vertical angles are analysed. A new target used to observe the vertical angle was designed. Some measures are suggested to reduce the errors in observing vertical angles. They are proved to be effective by experiments.
基金Projects(60775049,60805033) supported by National Natural Science Foundation of ChinaProject(2007AA704317) supported by the National High Technology Research and Development Program of China
文摘Due to the intense vibration durirLg launching and rigorous orbital temperature environment, the kinematic parameters of space robot may be largely deviated from their nominal parameters. The disparity will cause the real pose (including position and orientation) of the end effector not to match the desired one, and further hinder the space robot from performing the scheduled mission. To improve pose accuracy of space robot, a new self-calibration method using the distance measurement provided by a laser-ranger fixed on the end-effector is proposed. A distance-measurement model of the space robot is built according to the distance from the starting point of the laser beam to the intersection point at the declining plane. Based on the model, the cost function about the pose error is derived. The kinematic calibration is transferred to a non-linear system optimization problem, which is solved by the improved differential evolution (DE) algoritlun. A six-degree of freedom (6-DOF) robot is used as a practical simulation example, and the simulation results show: 1) A significant improvement of pose accuracy of space robot can be obtained by distance measurement only; 2) Search efficiency is increased by improved DE; 3) More calibration configurations may make calibration results better.
基金Sponsored by the NUST Research Fundation(2010ZYTS030)the Specialized Research Fundation for the Doctoral Program of Higher Education(20093219120018)
文摘The range-velocity ambiguity caused by moving target influences on the ranging accuracy of a short-range millimeter wave radar greatly.A new method was presented in this paper to reduce the range-velocity ambiguity and improve the ranging accuracy by estimating parameters of the echo signal with fractional Fourier transform and self-correlation.And,a new quick searching algorithm was given also to increase the calculation speed.Compared to the Chinese remainder theorem method,the proposed method is excellent for its simplicity and reducing the computation complexity.The simulation results show its validity.
基金supported by the National Natural Science Foundation of China(62101284)the State Key Laboratory of Geo-Information Engineering and Key Laboratory of Surveying and Mapping Science and Geospatial Information Technology of Ministry of Natural Resources+4 种基金China Academy of Surveying and Mapping(2021-03-11)the Natural Science Project of Jiangsu Province(21KJB420003)Nanjing University of Posts and Telecommunications Start-up Fund(NY221033,NY220168)the Foundation of Jiangsu Province Shuangchuang Doctor Grant(JSSCBS20210543)Beijing Key Laboratory of Urban Spatial Information Engineering(20210215)。
文摘In the application of persistent scatterer interferometry(PSI),deformation information is extracted from persistent scatterer(PS)points.Thus,the density and position of PS points are critical for PSI.To increase the PS density,a time-series InSAR chain termed as"super-resolution persistent scatterer interferometry"(SR-PSI)is proposed.In this study,we investigate certain important properties of SR-PSI.First,we review the main workflow and dataflow of SR-PSI.It is shown that in the implementation of the Capon algorithm,the diagonal loading(DL)approach should be only used when the condition number of the covariance matrix is sufficiently high to reduce the discontinuities between the joint images.We then discuss the density and positioning accuracy of PS when compared with traditional PSI.The theory and experimental results indicate that SR-PSI can increase the PS density in urban areas.However,it is ineffective for the rural areas,which should be an important consideration for the engineering application of SR-PSI.Furthermore,we validate that the positioning accuracy of PS can be improved by SRPSI via simulations.
文摘Mechanical components machined to high levels of ac cu racy are vital to achieve various functional requirements in engineering product s. In particular, the geometric accuracy of turned components play an important role in determining the form, fit and function of mechanical assembly requiremen ts. The geometric accuracy requirements of turned components are usually specifi ed in terms of roundness, straightness, cylindricity and concentricity. In pract ice, the accuracy specifications achievable are influenced by many factors such as component materials, production equipment, environmental factors, and machini ng process variables. While the sources of geometric errors due to materials, ma chinery and environment can be predicted to a large extent, the geometric accura cy due to the machining practice is unpredictable and difficult to determine. Since the fundamental geometric tolerances of work-pieces machined by tur ning a re sensitive to the cutting conditions, optimizing the cutting parameters such a s cutting speed, feed rate, and depth of cut is important for achieving the requ ired accuracy levels. Optimization studies of process variables in turning have not been well documented in the literature. Some experimental studies show the e ffect of process variables like cutting speed, feed rate and depth of cut on sur face roughness, production rate, production cost, etc. However, there have been no in-depth studies of the influence of the process variables on mechanical acc uracy related to the geometrical tolerances. In practice, a mechanical part usually consists of several geometrical features. For many mechanical parts, the geometric tolerances determine their functional characteristics. For example, diameter of a shaft and diameter of a hole decide the clearance of a cylindrical fit. The features of the cylindrical fit depend o n the dimensional tolerances of the size as well as several other geometrical to lerances like, roundness, cylindricity, and concentricity. In the study reported here, the dimensional and geometric tolerances achieved using turning experimen ts over a wide selection of cutting conditions will be used to analyze their inf luence on satisfying the functional requirements. The study will also show a met hodology of optimizing the process variables to achieve dimensional and geom etric tolerances to meet the requirements of specific functional features.
文摘Objective To qualitatively assess the diagnostic performance of dynamic contrast enhancement(DCE),diffusionweighted imaging(DWI),and T2-weighted imaging(T2WI),alone or in combination,in the evaluation of breast cancer.Methods We retrospectively reviewed the records of 394 consecutive patients with pathologically confirmed breast lesions who had undergone 3-T magnetic resonance imaging(MRI).The morphological characteristics of breast lesions were evaluated using DCE,DWI,and T2WI based on BI-RADS lexicon descriptors by trained radiologists.Patients were categorized into mass and non-mass groups based on MRI characteristics of the lesions,and the differences between benign and malignant lesions in each group were compared.Clinical prediction models for breast cancer diagnosis were constructed using logistic regression analysis.Diagnostic efficacies were compared using the area under the receiver operating characteristic curve(AUC)and DeLong test.Results For mass-like lesions,all the morphological parameters significantly differentiated benign and malignant lesions on consensus DCE,DWI,and T2WI(P<0.05).The combined method(DCE+DWI+T2WI)had a higher AUC(0.865)than any of the individual modality(DCE:0.786;DWI:0.793;T2WI:0.809)(P<0.05).For non-mass-like lesions,DWI signal intensity was a significant predictor of malignancy(P=0.036),but the model using DWI alone had a low AUC(0.669).Conclusion Morphological assessment using the combination of DCE,DWI,and T2WI provides better diagnostic value in differentiating benign and malignant breast mass-like lesions than assessment with only one of the modalities.
文摘In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.
基金This work was supported by the National Natural Science Foundation of China(61903086,61903366,62001115)the Natural Science Foundation of Hunan Province(2019JJ50745,2020JJ4280,2021JJ40133)the Fundamentals and Basic of Applications Research Foundation of Guangdong Province(2019A1515110136).
文摘The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by considering the underwater tar-get as a mass point,as well as the observation system error,the traditional error model best estimation trajectory(EMBET)with little observed data and too many parameters can lead to the ill-condition of the parameter model.In this paper,a multi-station fusion system error model based on the optimal polynomial con-straint is constructed,and the corresponding observation sys-tem error identification based on improved spectral clustering is designed.Firstly,the reduced parameter unified modeling for the underwater target position parameters and the system error is achieved through the polynomial optimization.Then a multi-sta-tion non-oriented graph network is established,which can address the problem of the inaccurate identification for the sys-tem errors.Moreover,the similarity matrix of the spectral cluster-ing is improved,and the iterative identification for the system errors based on the improved spectral clustering is proposed.Finally,the comprehensive measured data of long baseline lake test and sea test show that the proposed method can accu-rately identify the system errors,and moreover can improve the positioning accuracy for the underwater target positioning.
文摘The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms only use part of the target location, speed, and other information for correlation.In this paper, the artificial neural network method is used to establish the corresponding intelligent track correlation model and method according to the characteristics of swarm targets.Precisely, a route correlation method based on convolutional neural networks (CNN) and long short-term memory (LSTM)Neural network is designed. In this model, the CNN is used to extract the formation characteristics of UAV swarm and the spatial position characteristics of single UAV track in the formation,while the LSTM is used to extract the time characteristics of UAV swarm. Experimental results show that compared with the traditional algorithms, the algorithm based on CNN-LSTM neural network can make full use of multiple feature information of the target, and has better robustness and accuracy for swarm targets.
基金Project(50635040) supported by the National Natural Science Foundation of ChinaProject(2009AA044205) supported by the National High Technology Research and Development ProgramProject(BK2008043) supported by the Jiangsu Provincial Natural Science Foundation,China
文摘The influences of the mask wall angle on the current density distribution,shape of the evolving cavity and machining accuracy were investigated in electrochemical machining(ECM) by mask.A mathematical model was developed to predict the shape evolution during the ECM by mask.The current density distribution is sensitive to mask wall angle.The evolution of cavity is determined by the current density distribution of evolving workpiece surface.The maximum depth is away from the center of holes machined,which leads to the island appearing at the center of cavity for mask wall angles greater than or equal to 90°(β≥90°).The experimental system was established and the simulation results were experimentally verified.The results indicate that the simulation results of cavity shape are consistent with the actual ones.The experiments also show that the repetition accuracy of matrix-hole for β≥90° is higher than that for β<90°.A hole taper is diminished,and the machining accuracy is improved with the mask wall angle increasing.
基金supported by the National Natural Science Foundation of China(61690210 61690213)
文摘This paper studies the multi-sensor management problem for low earth orbit(LEO) infrared warning constellation used to track a midcourse missile. A covariance control approach, which selects sensor combinations or subset based on the difference between the desired covariance matrix and the actual covariance of each target, is used for sensor management, including some matrix metrics to measure the differentia between two covariance matrices. Besides, to meet the requirements of the space based warning system, the original covariance control approach is improved. Simulation results demonstrate that the covariance control approach is able to provide a better tracking performance by providing a well-designed desired covariance and balance tracking performance goals with system demands.