期刊文献+
共找到5,626篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-platform collaborative MRC-PSO algorithm for anti-ship missile path planning
1
作者 LIU Gang GUO Xinyuan +2 位作者 HUANG Dong CHEN Kezhong LI Wu 《Journal of Systems Engineering and Electronics》 2025年第2期494-509,共16页
To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO al... To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO algorithm utilizes a semi-rasterization environment modeling technique and inte-grates the geometric gradient law of ASMs which distinguishes itself from other collaborative path planning algorithms by fully considering the coupling between collaborative paths. Then, MRC-PSO algorithm conducts chunked stepwise recursive evo-lution of particles while incorporating circumvent, coordination, and smoothing operators which facilitates local selection opti-mization of paths, gradually reducing algorithmic space, accele-rating convergence, and enhances path cooperativity. Simula-tion experiments comparing the MRC-PSO algorithm with the PSO algorithm, genetic algorithm and operational area cluster real-time restriction (OACRR)-PSO algorithm, which demon-strate that the MRC-PSO algorithm has a faster convergence speed, and the average number of iterations is reduced by approximately 75%. It also proves that it is equally effective in resolving complex scenarios involving multiple obstacles. More-over it effectively addresses the problem of path crossing and can better satisfy the requirements of multi-platform collabora-tive path planning. The experiments are conducted in three col-laborative operation modes, namely, three-to-two, three-to-three, and four-to-two, and the outcomes demonstrate that the algorithm possesses strong universality. 展开更多
关键词 anti-ship missiles multi-platform collaborative path planning particle swarm optimization(PSO)algorithm
在线阅读 下载PDF
AUV 3D path planning based on improved PSO
2
作者 LI Hongen LI Shilong +1 位作者 WANG Qi HUANG Xiaoming 《Journal of Systems Engineering and Electronics》 2025年第3期854-866,共13页
The influence of ocean environment on navigation of autonomous underwater vehicle(AUV)cannot be ignored.In the marine environment,ocean currents,internal waves,and obstacles are usually considered in AUV path planning... The influence of ocean environment on navigation of autonomous underwater vehicle(AUV)cannot be ignored.In the marine environment,ocean currents,internal waves,and obstacles are usually considered in AUV path planning.In this paper,an improved particle swarm optimization(PSO)is proposed to solve three problems,traditional PSO algorithm is prone to fall into local optimization,path smoothing is always carried out after all the path planning steps,and the path fitness function is so simple that it cannot adapt to complex marine environment.The adaptive inertia weight and the“active”particle of the fish swarm algorithm are established to improve the global search and local search ability of the algorithm.The cubic spline interpolation method is combined with PSO to smooth the path in real time.The fitness function of the algorithm is optimized.Five evaluation indexes are comprehensively considered to solve the three-demensional(3D)path planning problem of AUV in the ocean currents and internal wave environment.The proposed method improves the safety of the path planning and saves energy. 展开更多
关键词 autonomous underwater vehicle(AUV) three-dimensional(3D)path planning particle swarm optimization(PSO) cubic spline interpolation
在线阅读 下载PDF
Multiple fixed-wing UAVs collaborative coverage 3D path planning method for complex areas
3
作者 Mengyang Wang Dong Zhang +1 位作者 Chaoyue Li Zhaohua Zhang 《Defence Technology(防务技术)》 2025年第5期197-215,共19页
Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV... Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV capabilities,terrain,complex areas,and mission dynamics.A novel dynamic collaborative path planning algorithm is introduced,designed to ensure complete coverage of designated areas.This algorithm meticulously optimizes the operation,entry,and transition paths for each UAV,while also establishing evaluation metrics to refine coverage sequences for each area.Additionally,a three-dimensional path is computed utilizing an altitude descent method,effectively integrating twodimensional coverage paths with altitude constraints.The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios,including both single-area and multi-area coverage by multi-UAV.Results show that the coverage paths generated by this method significantly reduce both computation time and path length,providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments. 展开更多
关键词 Multi-fixed-wing UAVs(multi-UAV) Minimum time cooperative coverage Dynamic complete coverage path planning(DCCPP) Dubins curves Improved dynamic programming algorithm(IDP)
在线阅读 下载PDF
Ground threat prediction-based path planning of unmanned autonomous helicopter using hybrid enhanced artificial bee colony algorithm 被引量:3
4
作者 Zengliang Han Mou Chen +1 位作者 Haojie Zhu Qingxian Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期1-22,共22页
Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a gro... Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a ground threat prediction-based path planning method is proposed based on artificial bee colony(ABC)algorithm by collaborative thinking strategy.Firstly,a dynamic threat distribution probability model is developed based on the characteristics of typical ground threats.The dynamic no-fly zone of the UAH is simulated and established by calculating the distribution probability of ground threats in real time.Then,a dynamic path planning method for UAH is designed in complex environment based on the real-time prediction of ground threats.By adding the collision warning mechanism to the path planning model,the flight path could be dynamically adjusted according to changing no-fly zones.Furthermore,a hybrid enhanced ABC algorithm is proposed based on collaborative thinking strategy.The proposed algorithm applies the leader-member thinking mechanism to guide the direction of population evolution,and reduces the negative impact of local optimal solutions caused by collaborative learning update strategy,which makes the optimization performance of ABC algorithm more controllable and efficient.Finally,simulation results verify the feasibility and effectiveness of the proposed ground threat prediction path planning method. 展开更多
关键词 UAH path planning Ground threat prediction Hybrid enhanced Collaborative thinking
在线阅读 下载PDF
Real-time UAV path planning based on LSTM network 被引量:2
5
作者 ZHANG Jiandong GUO Yukun +3 位作者 ZHENG Lihui YANG Qiming SHI Guoqing WU Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期374-385,共12页
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on... To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning. 展开更多
关键词 deep Q network path planning neural network unmanned aerial vehicle(UAV) long short-term memory(LSTM)
在线阅读 下载PDF
Distributed collaborative complete coverage path planning based on hybrid strategy 被引量:1
6
作者 ZHANG Jia DU Xin +1 位作者 DONG Qichen XIN Bin 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期463-472,共10页
Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm ... Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment.Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with patternbased genetic algorithm(PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably. 展开更多
关键词 multi-agent cooperation unmanned aerial vehicles(UAV) distributed algorithm complete coverage path planning(CCPP)
在线阅读 下载PDF
Optimal search path planning of UUV in battlefeld ambush scene
7
作者 Wei Feng Yan Ma +3 位作者 Heng Li Haixiao Liu Xiangyao Meng Mo Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期541-552,共12页
Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical ... Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat. 展开更多
关键词 Battlefield ambush Optimal search path planning UUV path planning Probability of cooperative search
在线阅读 下载PDF
Improving path planning efficiency for underwater gravity-aided navigation based on a new depth sorting fast search algorithm
8
作者 Xiaocong Zhou Wei Zheng +2 位作者 Zhaowei Li Panlong Wu Yongjin Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期285-296,共12页
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi... This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results. 展开更多
关键词 Depth Sorting Fast Search algorithm Underwater gravity-aided navigation path planning efficiency Quick Rapidly-exploring Random Trees*(QRRT*)
在线阅读 下载PDF
改进邻域扩展A^(*)算法的移动机器人路径规划 被引量:1
9
作者 董雅文 杨静雯 +1 位作者 张宝锋 赵小惠 《机械设计与制造》 北大核心 2025年第1期291-295,共5页
为解决A^(*)算法在规划路径时存在转折角度过大、路径不平滑的问题,提出改进邻域扩展A^(*)算法。首先,对A^(*)算法搜索范围扩展至24邻域,然后对邻域进行二次数量优化处理得到最终邻域搜索节点。其次,设计具有双层位置导向信息的评价函数... 为解决A^(*)算法在规划路径时存在转折角度过大、路径不平滑的问题,提出改进邻域扩展A^(*)算法。首先,对A^(*)算法搜索范围扩展至24邻域,然后对邻域进行二次数量优化处理得到最终邻域搜索节点。其次,设计具有双层位置导向信息的评价函数,最后对所得路径进行二次平滑处理以剔除冗余节点并削弱路径尖峰的剧烈程度。仿真结果表明,改进邻域扩展A^(*)算法在路径长度、搜索节点数量、规划时间上均优于传统A^(*)算法,且路径无尖峰转角,整体趋势平缓。 展开更多
关键词 点对点路径规划 A^(*)算法 邻域扩展
在线阅读 下载PDF
改进A^(*)算法融合DWA机器人路径规划研究 被引量:1
10
作者 曾宪阳 张加旺 《电子测量技术》 北大核心 2025年第6期20-27,共8页
在物流机器人运输流程中,路径规划是核心环节,面临路径不够平滑及算法搜索效率低下的挑战。A^(*)算法作为广泛应用的全局路径规划方法,在应用于物流机器人时存在无法有效实现路径平滑等问题。为此,对传统A^(*)算法进行了改进,通过动态... 在物流机器人运输流程中,路径规划是核心环节,面临路径不够平滑及算法搜索效率低下的挑战。A^(*)算法作为广泛应用的全局路径规划方法,在应用于物流机器人时存在无法有效实现路径平滑等问题。为此,对传统A^(*)算法进行了改进,通过动态加权处理启发函数,并利用Floyd算法去除路径中的冗余点,同时引入安全距离机制以防碰撞。此外,还对路径进行了平滑优化,以更好地适应物流机器人的实际移动需求。MATLAB仿真结果显示,改进后的A^(*)算法相比传统算法在转折点数量上平均减少了58.5%,路径长度缩短了3.19%,遍历点数降低了59.9%。进一步结合DWA算法进行局部路径规划,实现了避障功能。通过仿真和实车实验验证了该融合算法的有效性。 展开更多
关键词 A^(*)算法 路径规划 DWA算法 物流机器人 MATLAB仿真
在线阅读 下载PDF
基于改进A^(*)平滑性路径规划算法研究
11
作者 王云亮 张赛 吴艳娟 《计算机应用与软件》 北大核心 2025年第1期258-263,276,共7页
为了解决传统A^(*)算法执行效率不高,转折点过多等问题,提出一种基于优化关键点选取和平滑路径的改进A^(*)算法。首先运用一种改进跳点搜索算法对A^(*)算法加快跳点搜索速度并对扩展子节点进行遴选,引入RRT*中剪枝思想在二次路径规划时... 为了解决传统A^(*)算法执行效率不高,转折点过多等问题,提出一种基于优化关键点选取和平滑路径的改进A^(*)算法。首先运用一种改进跳点搜索算法对A^(*)算法加快跳点搜索速度并对扩展子节点进行遴选,引入RRT*中剪枝思想在二次路径规划时剔除非必要的节点。最后将A^(*)算法结合Bezier曲线对生成路径进行平滑性处理。为测试改进A^(*)算法的可行性与有效性,在多种不同尺寸规格的栅格地图中和移动机器人平台上进行对比仿真实验。结果表明,改进后A^(*)算法相比于原A^(*)算法生成扩展节点数量更少、寻路时间缩短、执行效率更高,改进后A^(*)算法路径规划性能得到明显提升。 展开更多
关键词 移动机器人 A^(*)算法 贝塞尔曲线 路径规划
在线阅读 下载PDF
基于改进A^(*)算法的水空两栖机器人多目标路径规划
12
作者 沈跃 孙浩 +2 位作者 沈亚运 郭奕 刘慧 《农业工程学报》 北大核心 2025年第6期62-70,共9页
实现水空两栖机器人安全、高效进行多目标点跨塘水质检测作业,减少传统水质检测模式时间及经济成本,合理的路径规划十分重要。针对传统A^(*)算法路径曲折、搜索效率低、无法考虑多栖机器人约束特性等问题,该研究提出一种改进A^(*)的水... 实现水空两栖机器人安全、高效进行多目标点跨塘水质检测作业,减少传统水质检测模式时间及经济成本,合理的路径规划十分重要。针对传统A^(*)算法路径曲折、搜索效率低、无法考虑多栖机器人约束特性等问题,该研究提出一种改进A^(*)的水空两栖机器人路径规划算法。首先采集障碍物分布情况和高度信息,建立多水域2.5维栅格地图;其次在A^(*)算法评价函数中加入能耗、时间及安全代价,通过调节不同权重获取相应初始路径;然后通过动态分配权重改进启发式函数,加快搜索效率,并利用目标成本函数对所有目标进行优先级判定,实现多目标路径规划;最后通过增加空中模态切换点、删除冗余点及采用B样条曲线优化路径,生成可连接多水域多水质检测点的三维平滑轨迹。仿真试验结果表明:与传统A^(*)算法和陆空A^(*)算法相比,改进A^(*)算法迭代次数分别减少70.04%与68.07%,路径长度分别减少35.44%与7.6%,总转角分别减小83.63%与8.65%,危险节点数分别减少80.67%与33.33%。真实水域试验表明:改进A^(*)算法的迭代次数比传统A^(*)算法和陆空A^(*)算法减少84.89%与83.78%,路径长度分别减少12%与0.6%,总转角分别减小73.21%与22.1%,危险节点数分别减少84.62%与80%,可规划出通过多个目标点的安全、平滑路径,有效提高水质检测效率,为多栖机器人自主导航提供参考。 展开更多
关键词 多目标 路径规划 水空两栖机器人 A^(*)算法 轨迹优化
在线阅读 下载PDF
基于改进A^(*)算法的矿用巡检机器人路径规划
13
作者 张辉 苏国用 +2 位作者 赵东洋 杨宇豪 何凯 《太原理工大学学报》 北大核心 2025年第3期559-566,共8页
【目的】针对煤矿井下环境非结构化、局部可通行区域窄以及传统A^(*)算法规划路径存在搜索时间长、搜索节点多、路径冗余节点多、路径平滑度较差等问题,提出一种基于改进A^(*)算法的矿用巡检机器人路径规划算法。【方法】首先在传统A^(*... 【目的】针对煤矿井下环境非结构化、局部可通行区域窄以及传统A^(*)算法规划路径存在搜索时间长、搜索节点多、路径冗余节点多、路径平滑度较差等问题,提出一种基于改进A^(*)算法的矿用巡检机器人路径规划算法。【方法】首先在传统A^(*)算法的启发函数中引入预估消耗的指数函数和障碍物覆盖率之和,以提高搜索效率,缩短搜索时间;其次改进传统8邻域搜索为9邻域搜索,从而避免无用搜索,减少搜索节点数量;然后通过Floyd算法剔除路径中的冗余节点;最后采用改进3阶贝塞尔曲线完成路径平滑任务。【结果】结果表明:相较于传统A^(*)算法,在特定的20×20、30×30和40×40栅格地图下,改进A^(*)算法使得搜索时间分别缩短44.1%、63.8%和84.8%,搜索节点分别减少31.6%、47.9%和71%;路径平滑算法能够减少路径节点,改善路径平滑度,更适用于矿用巡检机器人的路径规划。 展开更多
关键词 矿用巡检机器人 路径规划 改进A^(*)算法 FLOYD算法 贝塞尔曲线
在线阅读 下载PDF
基于改进A^(*)和DWA融合的机器人路径规划
14
作者 崔鹏鹏 张梅 周伸伸 《传感器与微系统》 北大核心 2025年第7期144-148,154,共6页
针对传统A^(*)算法在复杂环境中存在的路径冗余、贴近障碍物及动态避障不足等问题,以及动态窗口法(DWA)算法易陷入局部最优、动态响应滞后等问题,本文提出一种改进A^(*)与DWA算法融合的路径规划算法,融合算法将全局路径关键节点与动态... 针对传统A^(*)算法在复杂环境中存在的路径冗余、贴近障碍物及动态避障不足等问题,以及动态窗口法(DWA)算法易陷入局部最优、动态响应滞后等问题,本文提出一种改进A^(*)与DWA算法融合的路径规划算法,融合算法将全局路径关键节点与动态避障结合,兼顾全局最优与动态适应性。在全局规划中,改进A^(*)算法通过自适应评价函数动态调整启发式权重,引入安全距离惩罚项与障碍物密度感知机制,来优化路径安全性与平滑性,并结合线段可达性检测策略消除冗余转折点;在局部规划中,改进DWA算法通过多目标评价函数融合全局路径跟踪、障碍物距离及轨迹平滑性指标,增强避障灵活性与实时性。实验结果表明,该算法在路径全局最优性、动态避障效率及轨迹平滑度方面均表现出显著优势。 展开更多
关键词 机器人路径规划 改进A^(*)算法 改进动态窗口法算法 融合算法 动态避障
在线阅读 下载PDF
基于DHPA^(*)-DSACO算法的AGV路径规划研究
15
作者 王俊岭 刘佳年 +1 位作者 边俊君 王振东 《机床与液压》 北大核心 2025年第5期15-23,共9页
自主引导车(AGV)的路径规划算法是确保其正常运行的关键部分。针对A^(*)算法在路径规划过程中存在的搜索效率低、路径曲率大的问题,以及蚁群ACO算法收敛速度慢和对参数敏感等缺陷,提出一种动态启发式惩罚A^(*)与动态感知蚁群优化算法相... 自主引导车(AGV)的路径规划算法是确保其正常运行的关键部分。针对A^(*)算法在路径规划过程中存在的搜索效率低、路径曲率大的问题,以及蚁群ACO算法收敛速度慢和对参数敏感等缺陷,提出一种动态启发式惩罚A^(*)与动态感知蚁群优化算法相融合的算法—DHPA^(*)-DSACO。DHPA^(*)算法通过设置动态权重因子,结合父节点启发距离,并引入转弯惩罚项,以降低运行时间和路径曲率。DSACO算法通过设置自适应蚁群启发因子和动态挥发因子,优化信息素更新策略,从而缩短路径长度。同时,该算法利用B样条曲线对路径进行平滑处理。为验证算法的可行性,在PyCharm环境中将DHPA^(*)-DSACO算法与其他算法进行对比测试,并对实验结果进行了分析。最后,为了模拟真实世界中的情况,基于ROS系统建立仿真平台,验证了DHPA^(*)-DSACO算法的有效性。结果表明:DHPA^(*)-DSACO算法有效降低了路径长度、曲率和运行时间,显著提升了运行效率。此外,该算法还能有效避免算法陷入局部最优解,减少收敛迭代次数,进一步增强了算法的鲁棒性,使其更好地适应AGV的实际运行情况。 展开更多
关键词 路径规划 蚁群算法 A^(*)算法 B样条曲线
在线阅读 下载PDF
复杂地形约束下的多目标路径规划A^(*)算法研究
16
作者 刘健 沈芸亦 +1 位作者 邱锦 罗亚松 《计算机应用与软件》 北大核心 2025年第8期297-305,381,共10页
为更好解决复杂环境的路径规划问题,研究在高程信息、地形坡度、地表类型等多约束条件影响下的特种无人车多目标A^(*)算法。将已知环境信息分类建成不同信息层栅格地图,叠加后形成2.5维融合栅格地图;根据不同约束条件建立路径多目标优... 为更好解决复杂环境的路径规划问题,研究在高程信息、地形坡度、地表类型等多约束条件影响下的特种无人车多目标A^(*)算法。将已知环境信息分类建成不同信息层栅格地图,叠加后形成2.5维融合栅格地图;根据不同约束条件建立路径多目标优化函数,并根据优化目标改进A^(*)算法的代价函数;采用熵值法对改进A^(*)算法得到的多条路径进行综合评价,筛选多目标优化效果最佳的路径;仿真结果表明在模拟的复杂环境下,改进的A^(*)算法规划的路径在长度、平稳性、无人车行驶时间、隐蔽性等方面都能够达到优化效果,验证了在复杂地形约束下,该改进算法对无人车路径多目标优化的可行性和有效性。 展开更多
关键词 无人车 路径规划 多目标优化 A~*算法 2.5维栅格地图
在线阅读 下载PDF
双邻域选择扩展A^(*)路径规划算法
17
作者 杨秀建 袁志豪 +1 位作者 白永瑞 敖鹏 《机械科学与技术》 北大核心 2025年第3期484-495,共12页
针对A^(*)算法在路径规划过程中存在的扩展节点过多、路径冗余点过多等问题,对经典A^(*)算法进行了改进研究。提出了斜八邻域扩展的概念,与四邻域扩展结合组成一种新的双邻域选择扩展策略,在路径搜索过程中可以有效减少扩展节点的数量... 针对A^(*)算法在路径规划过程中存在的扩展节点过多、路径冗余点过多等问题,对经典A^(*)算法进行了改进研究。提出了斜八邻域扩展的概念,与四邻域扩展结合组成一种新的双邻域选择扩展策略,在路径搜索过程中可以有效减少扩展节点的数量。为适应多种地图环境建立了新的启发函数,在相同地图环境下较经典A^(*)算法扩展的节点数量减少50%以上,路径搜索速度提高了一个数量级,算法效率明显提升。通过建立冗余点剔除策略与三次B样条曲线对初始路径进一步优化,剔除路径多余节点,减少路径转折,规划出一条符合机器人运动的最优路径。首先,在4种不同障碍物的地图环境下对改进后的A^(*)算法进行了仿真分析,并与Dijkstra、四邻域A^(*)算法、八邻域A^(*)算法进行了比较;然后,基于实验室的智能车试验平台进行了场地试验,对改进后的A^(*)算法进行了试验验证。结果表明:改进后A^(*)算法的路径搜索效率大幅提高,路径更有利于机器人运动,所提出的A^(*)改进算法是可行的、有效的。 展开更多
关键词 移动机器人 路径规划 A^(*)算法 邻域扩展 启发函数 冗余点剔除
在线阅读 下载PDF
基于障碍密度优先策略改进A^(*)算法的AGV路径规划
18
作者 陈一馨 段宇轩 +2 位作者 刘豪 谭世界 郑天乐 《郑州大学学报(工学版)》 北大核心 2025年第2期26-34,共9页
针对传统A^(*)算法在障碍物较多的实际场景下进行AGV路径规划时,存在路径拐点多、路径冗余节点过多以及易陷入局部最优解等问题,提出一种改进A^(*)算法,采用栅格法进行环境建模。首先,在启发函数中引入障碍物密度函数K(n)改进代价函数,... 针对传统A^(*)算法在障碍物较多的实际场景下进行AGV路径规划时,存在路径拐点多、路径冗余节点过多以及易陷入局部最优解等问题,提出一种改进A^(*)算法,采用栅格法进行环境建模。首先,在启发函数中引入障碍物密度函数K(n)改进代价函数,用于更准确地估计当前节点到目标节点的实际代价;其次,采用动态邻域搜索策略提高算法的搜索效率和运行效率;最后,通过冗余节点处理策略减少路径拐点和删除冗余节点,得到只包含起点、转折点以及终点的路径。采用不同尺寸和复杂度的栅格环境地图进行仿真实验,结果表明:所提改进A^(*)算法与传统A^(*)算法以及其他改进的A^(*)算法相比,路径长度分别缩短了4.71%和2.07%,路径拐点数量分别减少了45.45%和20.54%,路径存在节点分别减少了82.24%和62.45%。 展开更多
关键词 路径规划 栅格地图 改进A^(*)算法 启发函数 动态邻域搜索 冗余节点优化
在线阅读 下载PDF
基于改进A^(*)算法的机器人不平坦地形全局路径规划 被引量:3
19
作者 郭聚刚 于军琪 +3 位作者 冯春勇 王凯 陈易圣 董振平 《计算机工程与应用》 北大核心 2025年第5期309-322,共14页
针对机器人在非结构化和不平整地形的路径规划问题,提出了一种基于改进A^(*)算法的全局路径规划方法。改进A^(*)算法引入双向搜索策略以提高算法计算速度。通过路径节点过滤克服了双向搜索策略带来的问题并减少了关键节点的数量,增加坡... 针对机器人在非结构化和不平整地形的路径规划问题,提出了一种基于改进A^(*)算法的全局路径规划方法。改进A^(*)算法引入双向搜索策略以提高算法计算速度。通过路径节点过滤克服了双向搜索策略带来的问题并减少了关键节点的数量,增加坡度约束降低了机器人的爬坡角度和侧倾角度,提高了规划路径的安全性,通过Bézier曲线拟合路径使其变得光滑,更有利于机器人的运动控制。在不同地形和障碍密度的高程图上进行实验,验证了改进的有效性。实验结果表明,与传统A^(*)算法相比,改进A^(*)算法在路径长度增加14.6%至37.84%的情况下,计算时间减少了71.05%至82.90%,关键节点数量减少了51.94%至70.53%,并且爬坡角度和侧倾角度显著减少,路径更加平滑。因此,该方法在提高效率的同时能够在非结构化和不平坦的地形下生成安全可靠的路径。 展开更多
关键词 路径规划 不平坦地形 改进A^(*)算法 移动机器人
在线阅读 下载PDF
A review:On path planning strategies for navigation of mobile robot 被引量:93
20
作者 B.K. Patle Ganesh Babu L +2 位作者 Anish Pandey D.R.K. Parhi A. Jagadeesh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第4期582-606,共25页
This paper presents the rigorous study of mobile robot navigation techniques used so far.The step by step investigations of classical and reactive approaches are made here to understand the development of path plannin... This paper presents the rigorous study of mobile robot navigation techniques used so far.The step by step investigations of classical and reactive approaches are made here to understand the development of path planning strategies in various environmental conditions and to identify research gap.The classical approaches such as cell decomposition(CD),roadmap approach(RA),artificial potential field(APF);reactive approaches such as genetic algorithm(GA),fuzzy logic(FL),neural network(NN),firefly algorithm(FA),particle swarm optimization(PSO),ant colony optimization(ACO),bacterial foraging optimization(BFO),artificial bee colony(ABC),cuckoo search(CS),shuffled frog leaping algorithm(SFLA)and other miscellaneous algorithms(OMA)are considered for study.The navigation over static and dynamic condition is analyzed(for single and multiple robot systems)and it has been observed that the reactive approaches are more robust and perform well in all terrain when compared to classical approaches.It is also observed that the reactive approaches are used to improve the performance of the classical approaches as a hybrid algorithm.Hence,reactive approaches are more popular and widely used for path planning of mobile robot.The paper concludes with tabular data and charts comparing the frequency of individual navigational strategies which can be used for specific application in robotics. 展开更多
关键词 Mobile robot NAVIGATION path planning CLASSICAL APPROACHES Reactive APPROACHES Artificial INTELLIGENCE
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部