期刊文献+
共找到10,279篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-platform collaborative MRC-PSO algorithm for anti-ship missile path planning
1
作者 LIU Gang GUO Xinyuan +2 位作者 HUANG Dong CHEN Kezhong LI Wu 《Journal of Systems Engineering and Electronics》 2025年第2期494-509,共16页
To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO al... To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO algorithm utilizes a semi-rasterization environment modeling technique and inte-grates the geometric gradient law of ASMs which distinguishes itself from other collaborative path planning algorithms by fully considering the coupling between collaborative paths. Then, MRC-PSO algorithm conducts chunked stepwise recursive evo-lution of particles while incorporating circumvent, coordination, and smoothing operators which facilitates local selection opti-mization of paths, gradually reducing algorithmic space, accele-rating convergence, and enhances path cooperativity. Simula-tion experiments comparing the MRC-PSO algorithm with the PSO algorithm, genetic algorithm and operational area cluster real-time restriction (OACRR)-PSO algorithm, which demon-strate that the MRC-PSO algorithm has a faster convergence speed, and the average number of iterations is reduced by approximately 75%. It also proves that it is equally effective in resolving complex scenarios involving multiple obstacles. More-over it effectively addresses the problem of path crossing and can better satisfy the requirements of multi-platform collabora-tive path planning. The experiments are conducted in three col-laborative operation modes, namely, three-to-two, three-to-three, and four-to-two, and the outcomes demonstrate that the algorithm possesses strong universality. 展开更多
关键词 anti-ship missiles multi-platform collaborative path planning particle swarm optimization(PSO)algorithm
在线阅读 下载PDF
Multiple fixed-wing UAVs collaborative coverage 3D path planning method for complex areas
2
作者 Mengyang Wang Dong Zhang +1 位作者 Chaoyue Li Zhaohua Zhang 《Defence Technology(防务技术)》 2025年第5期197-215,共19页
Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV... Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV capabilities,terrain,complex areas,and mission dynamics.A novel dynamic collaborative path planning algorithm is introduced,designed to ensure complete coverage of designated areas.This algorithm meticulously optimizes the operation,entry,and transition paths for each UAV,while also establishing evaluation metrics to refine coverage sequences for each area.Additionally,a three-dimensional path is computed utilizing an altitude descent method,effectively integrating twodimensional coverage paths with altitude constraints.The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios,including both single-area and multi-area coverage by multi-UAV.Results show that the coverage paths generated by this method significantly reduce both computation time and path length,providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments. 展开更多
关键词 Multi-fixed-wing UaVs(multi-UaV) Minimum time cooperative coverage Dynamic complete coverage path planning(DCCPP) Dubins curves Improved dynamic programming algorithm(IDP)
在线阅读 下载PDF
AUV 3D path planning based on improved PSO
3
作者 LI Hongen LI Shilong +1 位作者 WANG Qi HUANG Xiaoming 《Journal of Systems Engineering and Electronics》 2025年第3期854-866,共13页
The influence of ocean environment on navigation of autonomous underwater vehicle(AUV)cannot be ignored.In the marine environment,ocean currents,internal waves,and obstacles are usually considered in AUV path planning... The influence of ocean environment on navigation of autonomous underwater vehicle(AUV)cannot be ignored.In the marine environment,ocean currents,internal waves,and obstacles are usually considered in AUV path planning.In this paper,an improved particle swarm optimization(PSO)is proposed to solve three problems,traditional PSO algorithm is prone to fall into local optimization,path smoothing is always carried out after all the path planning steps,and the path fitness function is so simple that it cannot adapt to complex marine environment.The adaptive inertia weight and the“active”particle of the fish swarm algorithm are established to improve the global search and local search ability of the algorithm.The cubic spline interpolation method is combined with PSO to smooth the path in real time.The fitness function of the algorithm is optimized.Five evaluation indexes are comprehensively considered to solve the three-demensional(3D)path planning problem of AUV in the ocean currents and internal wave environment.The proposed method improves the safety of the path planning and saves energy. 展开更多
关键词 autonomous underwater vehicle(aUV) three-dimensional(3D)path planning particle swarm optimization(PSO) cubic spline interpolation
在线阅读 下载PDF
Ground threat prediction-based path planning of unmanned autonomous helicopter using hybrid enhanced artificial bee colony algorithm 被引量:3
4
作者 Zengliang Han Mou Chen +1 位作者 Haojie Zhu Qingxian Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期1-22,共22页
Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a gro... Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a ground threat prediction-based path planning method is proposed based on artificial bee colony(ABC)algorithm by collaborative thinking strategy.Firstly,a dynamic threat distribution probability model is developed based on the characteristics of typical ground threats.The dynamic no-fly zone of the UAH is simulated and established by calculating the distribution probability of ground threats in real time.Then,a dynamic path planning method for UAH is designed in complex environment based on the real-time prediction of ground threats.By adding the collision warning mechanism to the path planning model,the flight path could be dynamically adjusted according to changing no-fly zones.Furthermore,a hybrid enhanced ABC algorithm is proposed based on collaborative thinking strategy.The proposed algorithm applies the leader-member thinking mechanism to guide the direction of population evolution,and reduces the negative impact of local optimal solutions caused by collaborative learning update strategy,which makes the optimization performance of ABC algorithm more controllable and efficient.Finally,simulation results verify the feasibility and effectiveness of the proposed ground threat prediction path planning method. 展开更多
关键词 UaH path planning Ground threat prediction Hybrid enhanced Collaborative thinking
在线阅读 下载PDF
Improving path planning efficiency for underwater gravity-aided navigation based on a new depth sorting fast search algorithm
5
作者 Xiaocong Zhou Wei Zheng +2 位作者 Zhaowei Li Panlong Wu Yongjin Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期285-296,共12页
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi... This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results. 展开更多
关键词 Depth Sorting Fast Search algorithm Underwater gravity-aided navigation path planning efficiency Quick Rapidly-exploring Random Trees*(QRRT*)
在线阅读 下载PDF
Distributed collaborative complete coverage path planning based on hybrid strategy 被引量:1
6
作者 ZHANG Jia DU Xin +1 位作者 DONG Qichen XIN Bin 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期463-472,共10页
Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm ... Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment.Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with patternbased genetic algorithm(PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably. 展开更多
关键词 multi-agent cooperation unmanned aerial vehicles(UaV) distributed algorithm complete coverage path planning(CCPP)
在线阅读 下载PDF
Real-time UAV path planning based on LSTM network 被引量:2
7
作者 ZHANG Jiandong GUO Yukun +3 位作者 ZHENG Lihui YANG Qiming SHI Guoqing WU Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期374-385,共12页
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on... To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning. 展开更多
关键词 deep Q network path planning neural network unmanned aerial vehicle(UaV) long short-term memory(LSTM)
在线阅读 下载PDF
Joint planning method for cross-domain unmanned swarm target assignment and mission trajectory
8
作者 WANG Ning LIANG Xiaolong +2 位作者 LI Zhe HOU Yueqi YANG Aiwu 《Journal of Systems Engineering and Electronics》 2025年第3期736-753,共18页
Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and miss... Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning.Firstly,the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources.Secondly,an algorithmic framework for joint target assignment and mission trajectory planning is proposed,in which the initial planning of the trajectory is performed in the target assignment phase,while the trajectory is further optimised afterwards.Next,the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function.Finally,the algorithm is numerically simulated by specific cases.Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms.Furthermore,the solution performance of the hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)algorithm is better than that of GA and EDA. 展开更多
关键词 cross-domain swarm unmanned system target assignment trajectory planning joint planning hybrid estimation of distribution algorithm(EDa)-genetic algorithm(Ga)
在线阅读 下载PDF
Resilient multi-objective mission planning for UAV formation:A unified framework integrating task pre-and re-assignment
9
作者 Xinwei Wang Xiaohua Gao +4 位作者 Lei Wang Xichao Su Junhong Jin Xuanbo Liu Zhilong Deng 《Defence Technology(防务技术)》 2025年第3期203-226,共24页
Combat effectiveness of unmanned aerial vehicle(UAV)formations can be severely affected by the mission execution reliability.During the practical execution phase,there are inevitable risks where UAVs being destroyed o... Combat effectiveness of unmanned aerial vehicle(UAV)formations can be severely affected by the mission execution reliability.During the practical execution phase,there are inevitable risks where UAVs being destroyed or targets failed to be executed.To improve the mission reliability,a resilient mission planning framework integrates task pre-and re-assignment modules is developed in this paper.In the task pre-assignment phase,to guarantee the mission reliability,probability constraints regarding the minimum mission success rate are imposed to establish a multi-objective optimization model.And an improved genetic algorithm with the multi-population mechanism and specifically designed evolutionary operators is used for efficient solution.As in the task-reassignment phase,possible trigger events are first analyzed.A real-time contract net protocol-based algorithm is then proposed to address the corresponding emergency scenario.And the dual objective used in the former phase is adapted into a single objective to keep a consistent combat intention.Three cases of different scales demonstrate that the two modules cooperate well with each other.On the one hand,the pre-assignment module can generate high-reliability mission schedules as an elaborate mathematical model is introduced.On the other hand,the re-assignment module can efficiently respond to various emergencies and adjust the original schedule within a millisecond.The corresponding animation is accessible at bilibili.com/video/BV12t421w7EE for better illustration. 展开更多
关键词 Cooperative mission planning UaV formation Mission reliability Evolutionary algorithm Contract net protocol
在线阅读 下载PDF
Optimal search path planning of UUV in battlefeld ambush scene
10
作者 Wei Feng Yan Ma +3 位作者 Heng Li Haixiao Liu Xiangyao Meng Mo Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期541-552,共12页
Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical ... Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat. 展开更多
关键词 Battlefield ambush Optimal search path planning UUV path planning Probability of cooperative search
在线阅读 下载PDF
Vehicle and onboard UAV collaborative delivery route planning:considering energy function with wind and payload
11
作者 GUO Jingfeng SONG Rui HE Shiwei 《Journal of Systems Engineering and Electronics》 2025年第1期194-208,共15页
The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a nove... The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted. 展开更多
关键词 vehicle and onboard unmanned aerial vehicle(UaV)collaborative delivery energy consumption function route planning mixed integer linear programming model adaptive large neighborhood search(aLNS)algorithm
在线阅读 下载PDF
Path planning in uncertain environment by using firefly algorithm 被引量:17
12
作者 B.K.Patle Anish Pandey +1 位作者 A.Jagadeesh D.R.Parhi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第6期691-701,共11页
Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mo... Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mobile robot. The paper presents application and implementation of Firefly Algorithm(FA)for Mobile Robot Navigation(MRN) in uncertain environment. The uncertainty is defined over the changing environmental condition from static to dynamic. The attraction of one firefly towards the other firefly due to variation of their brightness is the key concept of the proposed study. The proposed controller efficiently explores the environment and improves the global search in less number of iterations and hence it can be easily implemented for real time obstacle avoidance especially for dynamic environment. It solves the challenges of navigation, minimizes the computational calculations, and avoids random moving of fireflies. The performance of proposed controller is better in terms of path optimality when compared to other intelligent navigational approaches. 展开更多
关键词 Mobile robot NaVIGaTION FIREFLY algorithm path planning OBSTaCLE aVOIDaNCE
在线阅读 下载PDF
Global optimal path planning for mobile robot based onimproved Dijkstra algorithm and ant system algorithm 被引量:21
13
作者 谭冠政 贺欢 Aaron Sloman 《Journal of Central South University of Technology》 EI 2006年第1期80-86,共7页
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK ... A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning. 展开更多
关键词 mobile robot global optimal path planning improved Dijkstra algorithm ant system algorithm MaKLINK graph free MaKLINK line
在线阅读 下载PDF
Fuzzy Q learning algorithm for dual-aircraft path planning to cooperatively detect targets by passive radars 被引量:6
14
作者 Xiang Gao Yangwang Fang Youli Wu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第5期800-810,共11页
The problem of passive detection discussed in this paper involves searching and locating an aerial emitter by dualaircraft using passive radars. In order to improve the detection probability and accuracy, a fuzzy Q le... The problem of passive detection discussed in this paper involves searching and locating an aerial emitter by dualaircraft using passive radars. In order to improve the detection probability and accuracy, a fuzzy Q learning algorithrn for dual-aircraft flight path planning is proposed. The passive detection task model of the dual-aircraft is set up based on the partition of the target active radar's radiation area. The problem is formulated as a Markov decision process (MDP) by using the fuzzy theory to make a generalization of the state space and defining the transition functions, action space and reward function properly. Details of the path planning algorithm are presented. Simulation results indicate that the algorithm can provide adaptive strategies for dual-aircraft to control their flight paths to detect a non-maneuvering or maneu- vering target. 展开更多
关键词 Markov decision process (MDP) fuzzy Q learning dual-aircraft coordination path planning passive detection.
在线阅读 下载PDF
Mobile robot path planning based on adaptive bacterial foraging algorithm 被引量:8
15
作者 梁晓丹 李亮玉 +1 位作者 武继刚 陈瀚宁 《Journal of Central South University》 SCIE EI CAS 2013年第12期3391-3400,共10页
The utilization of biomimicry of bacterial foraging strategy was considered to develop an adaptive control strategy for mobile robot, and a bacterial foraging approach was proposed for robot path planning. In the prop... The utilization of biomimicry of bacterial foraging strategy was considered to develop an adaptive control strategy for mobile robot, and a bacterial foraging approach was proposed for robot path planning. In the proposed model, robot that mimics the behavior of bacteria is able to determine an optimal collision-free path between a start and a target point in the environment surrounded by obstacles. In the simulation, two test scenarios of static environment with different number obstacles were adopted to evaluate the performance of the proposed method. Simulation results show that the robot which reflects the bacterial foraging behavior can adapt to complex environments in the planned trajectories with both satisfactory accuracy and stability. 展开更多
关键词 robot path planning bacterial foraging behaviors swarm intelligence aDaPTaTION
在线阅读 下载PDF
Global path planning approach based on ant colony optimization algorithm 被引量:6
16
作者 文志强 蔡自兴 《Journal of Central South University of Technology》 EI 2006年第6期707-712,共6页
Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, concepti... Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, conceptions of neighboring area and smell area were presented. The former can ensure the diversity of paths and the latter ensures that each ant can reach the goal. Then the whole path was divided into three parts and ACO was used to search the second part path. When the three parts pathes were adjusted, the final path was found. The valid path and invalid path were defined to ensure the path valid. Finally, the strategies of the pheromone search were applied to search the optimum path. However, when only the pheromone was used to search the optimum path, ACO converges easily. In order to avoid this premature convergence, combining pheromone search and random search, a hybrid ant colony algorithm(HACO) was used to find the optimum path. The comparison between ACO and HACO shows that HACO can be used to find the shortest path. 展开更多
关键词 mobile robot ant colony optimization global path planning PHEROMONE
在线阅读 下载PDF
Ant Colony System Algorithm for Real-Time Globally Optimal Path Planning of Mobile Robots 被引量:26
17
作者 TAN Guan-Zheng HE Huan SLOMAN Aaron 《自动化学报》 EI CSCD 北大核心 2007年第3期279-285,共7页
为活动机器人计划的即时全球性最佳的路径的一个新奇方法基于蚂蚁殖民地系统(交流) 被建议算法。这个方法包括三步:第一步正在利用 MAKLINK 图理论建立活动机器人的空间模型,第二步正在利用 Dijkstra 算法发现一条非最优的没有碰撞的... 为活动机器人计划的即时全球性最佳的路径的一个新奇方法基于蚂蚁殖民地系统(交流) 被建议算法。这个方法包括三步:第一步正在利用 MAKLINK 图理论建立活动机器人的空间模型,第二步正在利用 Dijkstra 算法发现一条非最优的没有碰撞的路径,并且第三步正在利用 ACS 算法优化非最优的路径的地点以便产生全球性最佳的路径。建议方法是有效的并且能在即时路径被使用活动机器人计划的计算机模拟实验表演的结果。建议方法比与优秀人材模型一起基于基因算法计划方法的路径处于集中速度,答案变化,动态集中行为,和计算效率有更好的性能,这被验证了。 展开更多
关键词 蚁群系统 运算法则 自动化系统 计算机技术
在线阅读 下载PDF
Improved lazy theta algorithm based on octree map for path planning of UAV 被引量:1
18
作者 Meng-shun Yuan Tong-le Zhou Mou Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期8-18,共11页
This paper investigates the path planning method of unmanned aerial vehicle(UAV)in threedimensional map.Firstly,in order to keep a safe distance between UAV and obstacles,the obstacle grid in the map is expanded.By us... This paper investigates the path planning method of unmanned aerial vehicle(UAV)in threedimensional map.Firstly,in order to keep a safe distance between UAV and obstacles,the obstacle grid in the map is expanded.By using the data structure of octree,the octree map is constructed,and the search nodes is significantly reduced.Then,the lazy theta*algorithm,including neighbor node search,line-of-sight algorithm and heuristics weight adjustment is improved.In the process of node search,UAV constraint conditions are considered to ensure the planned path is actually flyable.The redundant nodes are reduced by the line-of-sight algorithm through judging whether visible between two nodes.Heuristic weight adjustment strategy is employed to control the precision and speed of search.Finally,the simulation results show that the improved lazy theta*algorithm is suitable for path planning of UAV in complex environment with multi-constraints.The effectiveness and flight ability of the algorithm are verified by comparing experiments and real flight. 展开更多
关键词 Unmanned aerial vehicle path planning Lazy theta*algorithm Octree map Line-of-sight algorithm
在线阅读 下载PDF
改进邻域扩展A^(*)算法的移动机器人路径规划 被引量:1
19
作者 董雅文 杨静雯 +1 位作者 张宝锋 赵小惠 《机械设计与制造》 北大核心 2025年第1期291-295,共5页
为解决A^(*)算法在规划路径时存在转折角度过大、路径不平滑的问题,提出改进邻域扩展A^(*)算法。首先,对A^(*)算法搜索范围扩展至24邻域,然后对邻域进行二次数量优化处理得到最终邻域搜索节点。其次,设计具有双层位置导向信息的评价函数... 为解决A^(*)算法在规划路径时存在转折角度过大、路径不平滑的问题,提出改进邻域扩展A^(*)算法。首先,对A^(*)算法搜索范围扩展至24邻域,然后对邻域进行二次数量优化处理得到最终邻域搜索节点。其次,设计具有双层位置导向信息的评价函数,最后对所得路径进行二次平滑处理以剔除冗余节点并削弱路径尖峰的剧烈程度。仿真结果表明,改进邻域扩展A^(*)算法在路径长度、搜索节点数量、规划时间上均优于传统A^(*)算法,且路径无尖峰转角,整体趋势平缓。 展开更多
关键词 点对点路径规划 a^(*)算法 邻域扩展
在线阅读 下载PDF
改进A^(*)算法融合DWA机器人路径规划研究 被引量:1
20
作者 曾宪阳 张加旺 《电子测量技术》 北大核心 2025年第6期20-27,共8页
在物流机器人运输流程中,路径规划是核心环节,面临路径不够平滑及算法搜索效率低下的挑战。A^(*)算法作为广泛应用的全局路径规划方法,在应用于物流机器人时存在无法有效实现路径平滑等问题。为此,对传统A^(*)算法进行了改进,通过动态... 在物流机器人运输流程中,路径规划是核心环节,面临路径不够平滑及算法搜索效率低下的挑战。A^(*)算法作为广泛应用的全局路径规划方法,在应用于物流机器人时存在无法有效实现路径平滑等问题。为此,对传统A^(*)算法进行了改进,通过动态加权处理启发函数,并利用Floyd算法去除路径中的冗余点,同时引入安全距离机制以防碰撞。此外,还对路径进行了平滑优化,以更好地适应物流机器人的实际移动需求。MATLAB仿真结果显示,改进后的A^(*)算法相比传统算法在转折点数量上平均减少了58.5%,路径长度缩短了3.19%,遍历点数降低了59.9%。进一步结合DWA算法进行局部路径规划,实现了避障功能。通过仿真和实车实验验证了该融合算法的有效性。 展开更多
关键词 a^(*)算法 路径规划 DWa算法 物流机器人 MaTLaB仿真
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部