期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于C5.0算法的胃癌生存预测模型研究 被引量:6
1
作者 黄志刚 刘虹 +1 位作者 刘娟 张岐山 《南京信息工程大学学报(自然科学版)》 CAS 2017年第4期406-410,共5页
我国的胃癌发病率高,每年新增胃癌患者占全世界每年新增数量的42%,胃癌成为我国恶性肿瘤防控的重点.本文针对胃癌数据的特征,给出数据预处理和集成方法;采用C5.0分类算法,构建了胃癌生存预测模型,并首次采用美国癌症研究所的SEER数据库... 我国的胃癌发病率高,每年新增胃癌患者占全世界每年新增数量的42%,胃癌成为我国恶性肿瘤防控的重点.本文针对胃癌数据的特征,给出数据预处理和集成方法;采用C5.0分类算法,构建了胃癌生存预测模型,并首次采用美国癌症研究所的SEER数据库进行预测实验.实验结果表明:C5.0预测的精确度、特异性均高于BP-神经网络算法;胃癌患者的出生地点与最终的存活状态之间存在较强的相关性.该研究是数据挖掘技术在医学领域的一个实际应用,对胃癌的临床诊断具有一定的参考价值,可为医生制定合理的治疗和预防方案提供一定参考. 展开更多
关键词 数据挖掘 C5.0分类算法 胃癌 生存预测 SEER数据库
在线阅读 下载PDF
基于C5.0与Apriori算法的森林生物量等级评价与因子关联分析 被引量:2
2
作者 王霓虹 高萌 +1 位作者 李丹 刘立臣 《中南林业科技大学学报》 CAS CSCD 北大核心 2015年第3期1-6,共6页
针对生物量影响因子量化研究较少、方法单一及区域生物量评价不足且基于单个树种生物量模型进行评价时工作量过大的问题,以孟家岗林场的三类小班清查数据为基础,选取与生物量水平相关的11个因子,利用C5.0算法进行生物量决策树建模,并进... 针对生物量影响因子量化研究较少、方法单一及区域生物量评价不足且基于单个树种生物量模型进行评价时工作量过大的问题,以孟家岗林场的三类小班清查数据为基础,选取与生物量水平相关的11个因子,利用C5.0算法进行生物量决策树建模,并进一步利用Apriror算法进行生物量强影响因子的关联规则挖掘。结果表明:生物量决策树模型的分类预测精度为88.78%,生物量影响因子的量化结果分别为树高(0.348)、胸径(0.225)、林分类型(0.196)、龄级(0.162)、郁闭度(0.134)、坡度(0.096)、海拔(0.074)、坡向(0.065)、立地类型(0.052)和坡位(0.037);得到707条置信度在80%以上、支持度在10%以上的因子关联规则,揭示了生物量影响因子间的隐含关联关系。建立的生物量决策树模型能为快速的区域生物量预测和评价提供模型参考,建立的关联规则评估模型能够为以碳汇为目标的森林生产与经营提供客观评价指标。 展开更多
关键词 森林生物量评价 生物量影响因子 C5.0算法 APRIORI算法 关联分析
在线阅读 下载PDF
基于C5.0决策树分类算法的ETM+影像信息提取 被引量:32
3
作者 温兴平 胡光道 杨晓峰 《地理与地理信息科学》 CSCD 北大核心 2007年第6期26-29,共4页
利用C5.0决策树算法对ETM+影像进行信息提取,通过与其他分类方法提取结果的对比,得出C5.0决策树分类算法精度较高。大气校正与数据融合可明显提高分类精度,利用经过NDVI、NDBI、缨帽变换处理后的影像组合数据进行信息提取可进一步提高... 利用C5.0决策树算法对ETM+影像进行信息提取,通过与其他分类方法提取结果的对比,得出C5.0决策树分类算法精度较高。大气校正与数据融合可明显提高分类精度,利用经过NDVI、NDBI、缨帽变换处理后的影像组合数据进行信息提取可进一步提高分类精度。研究发现,C5.0决策树算法用未处理的资料生成决策树的效果较差,而经大气校正和数据融合后计算出NDVI、NDBI及缨帽变换的前3个分量的组合数据生成的决策树深度最小,并且分类精度最高。 展开更多
关键词 C5.0决策树算法 ETM+遥感影像 信息提取
在线阅读 下载PDF
基于C5.0决策树的船舶交通事故致因分析模型及应用 被引量:7
4
作者 黄常海 沈佳 +3 位作者 朱冉超 齐绪存 郑菲 陆浩 《中国安全科学学报》 CAS CSCD 北大核心 2022年第10期90-99,共10页
为减少船舶交通事故的发生,对船舶交通事故的致因展开研究。首先,以事故类型作为输出变量,以船舶交通事故数据为样本,构建基于C5.0算法的船舶交通事故致因路径分析模型;然后,确定事故致因路径分析有效性评价指标;再次,运用“2-4”模型(2... 为减少船舶交通事故的发生,对船舶交通事故的致因展开研究。首先,以事故类型作为输出变量,以船舶交通事故数据为样本,构建基于C5.0算法的船舶交通事故致因路径分析模型;然后,确定事故致因路径分析有效性评价指标;再次,运用“2-4”模型(24Model),对所识别出的不同类型事故致因路径因果关系进一步分析,提出通过切断事故潜在致因路径的船舶交通事故预控措施;最后,将894起船舶交通事故数据样本随机分为80%的训练集和20%的测试集,应用所提出的模型进行分析。结果表明:所提出的模型可以生成不同类型事故的分类规则集,模型分类正确率达到90%以上,且模型具有强的泛化能力。结合分类规则集构建的船舶交通事故致因链为船舶交通事故的防范提供定量化的理论依据。 展开更多
关键词 C5.0算法 决策树 船舶交通事故 致因路径 致因分析 “2-4”模型(24Model)
在线阅读 下载PDF
民航NOSHOW预测及强因子关联分析 被引量:2
5
作者 曹卫东 许代代 +1 位作者 王静 王家亮 《计算机工程与应用》 CSCD 北大核心 2019年第2期221-227,共7页
在民航业务中,旅客订座后却不能如期登机(NOSHOW)一直是航空公司收益亏损的未解之题,为了解决该问题,提出了一种民航NOSHOW预测及强因子关联分析方法。首先利用优化C5.0算法进行NOSHOW决策树建模,得到了NOSHOW相关因子的量化结果,然后通... 在民航业务中,旅客订座后却不能如期登机(NOSHOW)一直是航空公司收益亏损的未解之题,为了解决该问题,提出了一种民航NOSHOW预测及强因子关联分析方法。首先利用优化C5.0算法进行NOSHOW决策树建模,得到了NOSHOW相关因子的量化结果,然后通过Apriori算法对NOSHOW强因子进行关联规则挖掘。实验构建了准确率为99.75%的NOSHOW决策树模型,得到了139条置信度在80.054%以上、支持度在10.021%以上的因子关联规则,进一步揭示了NOSHOW强因子之间的隐含关联关系,为各大航空公司实现准确的NOSHOW预测及收益提升管理提供了有效的决策依据。 展开更多
关键词 NOSHOW预测 优化C5.0算法 决策树建模 APRIORI算法 强因子关联分析
在线阅读 下载PDF
规则半自动学习的概率软逻辑推理模型 被引量:6
6
作者 张嘉 张晖 +2 位作者 赵旭剑 杨春明 李波 《计算机应用》 CSCD 北大核心 2018年第11期3144-3149,3155,共7页
概率软逻辑(PSL)作为一种基于声明式规则的概率模型,具有极强的扩展性和多领域适应性,目前为止,它需要人为给出大量的常识和领域知识作为规则确立的先决条件,这些知识的获取往往非常昂贵并且其中包含的不正确的信息可能会影响推理的正... 概率软逻辑(PSL)作为一种基于声明式规则的概率模型,具有极强的扩展性和多领域适应性,目前为止,它需要人为给出大量的常识和领域知识作为规则确立的先决条件,这些知识的获取往往非常昂贵并且其中包含的不正确的信息可能会影响推理的正确性。为了缓解这种困境,将C5.0算法和概率软逻辑相结合,让数据和知识共同驱动推理模型,提出了一种规则半自动学习方法。该方法利用C5.0算法提取规则,再辅以人工规则和优化调节后的规则作为改进的概率软逻辑输入。实验结果表明,在学生成绩预测问题上所提方法比C5.0算法和没有规则学习的概率软逻辑具有更高的精度;和纯手工定义规则的方法相比,所提方法能大幅降低人工成本;和贝叶斯网络(BN)、支持向量机(SVM)等算法相比,该方法也表现出不错的效果。 展开更多
关键词 概率软逻辑 规则自动提取 机器学习 C5.0算法 半自动学习
在线阅读 下载PDF
智能电能表故障预警系统的设计与开发 被引量:8
7
作者 张雅 樊艳芳 刘群杰 《电测与仪表》 北大核心 2021年第1期183-188,共6页
智能电能表因其信息采集的便利性以及功能的完善性而广泛普及,如何高效且有针对性地对数量如此庞大的智能电能表进行维护是电力运营企业面临的挑战。针对此问题,文中提出了基于数据挖掘技术的智能电能表故障预警方法,即利用C 5.0算法构... 智能电能表因其信息采集的便利性以及功能的完善性而广泛普及,如何高效且有针对性地对数量如此庞大的智能电能表进行维护是电力运营企业面临的挑战。针对此问题,文中提出了基于数据挖掘技术的智能电能表故障预警方法,即利用C 5.0算法构建智能电能表的故障预警模型,通过大量训练集对模型进行训练,再利用测试集计算模型的预警准确度。通过VS 2016平台搭建了故障预警系统,仿真结果表明,此系统能够对智能电能表的运行状态进行准确预警,电力运营企业可根据预警结果对异常的电能表进行重点检查,由此节省由于逐户排查所浪费的人力物力。 展开更多
关键词 智能电能表 故障预警 数据挖掘 C 5.0算法
在线阅读 下载PDF
基于机器学习的高光谱湿地植被分类研究 被引量:2
8
作者 罗宁 阮仁宗 王俊海 《林业调查规划》 2019年第3期1-7,共7页
为实现湿地植被的精细分类和高精度制图,为湿地管理部门提供准确的决策依据,以美国加州萨克拉门托—圣华金水域的典型湿地植被为研究对象,以高光谱影像为数据源,结合野外GPS采样点,对典型湿地植被的光谱反射率作一阶导数和二阶导数处理... 为实现湿地植被的精细分类和高精度制图,为湿地管理部门提供准确的决策依据,以美国加州萨克拉门托—圣华金水域的典型湿地植被为研究对象,以高光谱影像为数据源,结合野外GPS采样点,对典型湿地植被的光谱反射率作一阶导数和二阶导数处理,基于均值置信区间原理筛选特征波段,基于单因素分析法筛选能够明显区分植被类型的植被指数。联合特征波段和植被指数构建特征集,利用机器学习C5.0决策树生成知识规则并提取湿地植被信息。结果表明,基于机器学习C5.0决策树的湿地植被提取总体精度为80.09%,Kappa系数为0.792,与最大似然法比较,总体精度提升10.79%,Kappa系数提升0.105,说明基于机器学习的C5.0决策树法能够实现植被的精细分类,方法切实可行。 展开更多
关键词 湿地植被 机器学习 C5.0算法 高光谱影像 分类精度
在线阅读 下载PDF
基于高分辨率遥感影像的土壤类型制图研究 被引量:4
9
作者 芦倩 赵维俊 黄鑫 《甘肃农业大学学报》 CAS CSCD 2022年第6期188-197,共10页
【目的】将数字土壤制图技术应用在土地调查中从而制作高精度土壤图。【方法】以祁连山排露沟小流域的土壤类型作为研究对象,选择高分二号遥感数据及DEM数据提取遥感光谱指数和地形因子作为环境协同变量,分别基于C5.0决策树算法、CART... 【目的】将数字土壤制图技术应用在土地调查中从而制作高精度土壤图。【方法】以祁连山排露沟小流域的土壤类型作为研究对象,选择高分二号遥感数据及DEM数据提取遥感光谱指数和地形因子作为环境协同变量,分别基于C5.0决策树算法、CART决策树算法及支持向量机方法构建土壤类型制图模型,制作研究区土壤类型分布图,并比较评价3种方法下的制图结果。【结果】基于C5.0决策树算法得到的制图结果经验证,其总体精度为89%,明显高于其他2种方法的制图精度。【结论】在研究区可用,且提升了流域数字土壤制图的精度,为该地区的数字土壤制图技术提供一定的科学参考。 展开更多
关键词 环境协同变量 C5.0决策树算法 CART决策树 数据挖掘 数字土壤制图
在线阅读 下载PDF
交通流量数据的分类规则挖掘 被引量:6
10
作者 巩帅 《计算机工程与应用》 CSCD 北大核心 2006年第6期219-220,232,共3页
概述了数据挖掘的分类算法,并简要介绍了C5.0决策树算法。以北京市“三横两纵”主干道交通流量数据为例,采用C5.0决策树算法提取交通流量的分类规则,用于分析交通流量规律、信息模式和数据趋势,并对分类树进行量化,为交通信号设计、路... 概述了数据挖掘的分类算法,并简要介绍了C5.0决策树算法。以北京市“三横两纵”主干道交通流量数据为例,采用C5.0决策树算法提取交通流量的分类规则,用于分析交通流量规律、信息模式和数据趋势,并对分类树进行量化,为交通信号设计、路网规划、道路设计、路网节点设计等提供决策支持。 展开更多
关键词 交通流量数据 分类规则 数据挖掘 C5.0决策树算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部