In order to investigate and predict the material properties of curved surface AISI 1045 steel component during spot continual induction hardening(SCIH),a 3D model for curved surface workpieces which coupled electromag...In order to investigate and predict the material properties of curved surface AISI 1045 steel component during spot continual induction hardening(SCIH),a 3D model for curved surface workpieces which coupled electromagnetic,temperature and phase transformation fields was built by finite element software ANSYS.A small size inductor and magnetizer were used in this model,which can move along the top surface of workpiece flexibly.The effect of inductor moving velocity and workpiece radius on temperature field was analyzed and the heating delay phenomenon was found through comparing the simulated results.The temperature field results indicate that the heating delay phenomenon is more obvious under high inductor moving velocity condition.This trend becomes more obvious if the workpiece radius becomes larger.The predictions of microstructure and micro-hardness distribution were also carried out via this model.The predicted results show that the inductor moving velocity is the dominated factor for the distribution of 100% martensite region and phase transformation region.The influencing factor of workpiece radius on 100% martensite region and phase transformation region distribution is obvious under relatively high inductor moving velocity but inconspicuous under relatively low inductor moving velocity.展开更多
The application of ultrasound techniques to monitor the condition of structures is becoming more prominent because these techniques can detect the early symptoms of defects such as cracks and other defects.The early d...The application of ultrasound techniques to monitor the condition of structures is becoming more prominent because these techniques can detect the early symptoms of defects such as cracks and other defects.The early detection of defects is of vital importance to avoid major failures with catastrophic consequences.An assessment of an ultrasound technique was used to investigate fatigue damage behaviour.Fatigue tests were performed according to the ASTM E466-96 standard with the attachment of an ultrasound sensor to the test specimen.AISI 1045 carbon steel was used due to its wide application in the automotive industry.A fatigue test was performed under constant loading stress at a sampling frequency of 8 Hz.Two sets of data acquisition systems were used to collect the fatigue strain signals and ultrasound signals.All of the signals were edited and analysed using a signal processing approach.Two methods were used to evaluate the signals,the integrated Kurtosis-based algorithm for z-filter technique(I-kaz) and the short-time Fourier transform(STFT).The fatigue damage behaviour was observed from the initial stage until the last stage of the fatigue test.The results of the I-kaz coefficient and the STFT spectrum were used to explain and describe the behaviour of the fatigue damage.I-kaz coefficients were ranged from 60 to 61 for strain signals and ranged from 5 to 76 for ultrasound signals.I-kaz values tend to be high at failure point due to high amplitude of respective signals.STFT spectrogram displays the colour intensity which represents the damage severity of the strain signals.I-kaz technique is found very useful and capable in assessing both stationary and non-stationary signals while STFT technique is suitable only for non-stationary signals by displaying its spectrogram.展开更多
基金Project (51175392) supported by the National Natural Science Foundation of ChinaProject (2014BAA012) supported by the Key Project of Hubei Province Science & Technology Pillar Program,ChinaProjects (2012-IV-067,2013-VII-020) supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to investigate and predict the material properties of curved surface AISI 1045 steel component during spot continual induction hardening(SCIH),a 3D model for curved surface workpieces which coupled electromagnetic,temperature and phase transformation fields was built by finite element software ANSYS.A small size inductor and magnetizer were used in this model,which can move along the top surface of workpiece flexibly.The effect of inductor moving velocity and workpiece radius on temperature field was analyzed and the heating delay phenomenon was found through comparing the simulated results.The temperature field results indicate that the heating delay phenomenon is more obvious under high inductor moving velocity condition.This trend becomes more obvious if the workpiece radius becomes larger.The predictions of microstructure and micro-hardness distribution were also carried out via this model.The predicted results show that the inductor moving velocity is the dominated factor for the distribution of 100% martensite region and phase transformation region.The influencing factor of workpiece radius on 100% martensite region and phase transformation region distribution is obvious under relatively high inductor moving velocity but inconspicuous under relatively low inductor moving velocity.
基金Projects(UKM-KK-03-FRGS0118-2010,UKM-OUP-NBT-28-135/2011)supported by FRGS Universiti Kebangsaan Malaysia,Malaysia
文摘The application of ultrasound techniques to monitor the condition of structures is becoming more prominent because these techniques can detect the early symptoms of defects such as cracks and other defects.The early detection of defects is of vital importance to avoid major failures with catastrophic consequences.An assessment of an ultrasound technique was used to investigate fatigue damage behaviour.Fatigue tests were performed according to the ASTM E466-96 standard with the attachment of an ultrasound sensor to the test specimen.AISI 1045 carbon steel was used due to its wide application in the automotive industry.A fatigue test was performed under constant loading stress at a sampling frequency of 8 Hz.Two sets of data acquisition systems were used to collect the fatigue strain signals and ultrasound signals.All of the signals were edited and analysed using a signal processing approach.Two methods were used to evaluate the signals,the integrated Kurtosis-based algorithm for z-filter technique(I-kaz) and the short-time Fourier transform(STFT).The fatigue damage behaviour was observed from the initial stage until the last stage of the fatigue test.The results of the I-kaz coefficient and the STFT spectrum were used to explain and describe the behaviour of the fatigue damage.I-kaz coefficients were ranged from 60 to 61 for strain signals and ranged from 5 to 76 for ultrasound signals.I-kaz values tend to be high at failure point due to high amplitude of respective signals.STFT spectrogram displays the colour intensity which represents the damage severity of the strain signals.I-kaz technique is found very useful and capable in assessing both stationary and non-stationary signals while STFT technique is suitable only for non-stationary signals by displaying its spectrogram.