Driven by pulse modulated radio-frequency plasma in capacitively coupled discharge are studied by source, the behavior of SiH4/N2/02 using a one-dimensional fluid model. Totally, 48 different species (electrons, ions...Driven by pulse modulated radio-frequency plasma in capacitively coupled discharge are studied by source, the behavior of SiH4/N2/02 using a one-dimensional fluid model. Totally, 48 different species (electrons, ions, neutrals, radicals and excited species) are involved in this simulation. Time evolution of the particle densities and electron temperature with different duty cycles are obtained, as well as the electronegativity nsiH-3 /ne of the main negative ion (Sill3 ). The results show that, by reducing the duty cycle, higher electron temperature and particle density can be achieved for the same average dissipated power, and the ion energy can also be effectively reduced, which will offer evident improvement in plasma deposition processes compared with the case of continuous wave discharge.展开更多
A one-dimensional fluid/Monte-Carlo(MC)hybrid model is developed to describe capacitively coupled SiH_4/Ar discharge,in which the lower electrode is applied by a RF source and pulse modulated by a square-wave,to inv...A one-dimensional fluid/Monte-Carlo(MC)hybrid model is developed to describe capacitively coupled SiH_4/Ar discharge,in which the lower electrode is applied by a RF source and pulse modulated by a square-wave,to investigate the modulation effects of the pulse duty cycle on the discharge mechanism.An electron Monte Carlo simulation is used to calculate the electron energy distribution as a function of position and time phase.Rate coefficients in chemical reactions can then be obtained and transferred to the fluid model for the calculation of electron temperature and densities of different species,such as electrons,ions,and radicals.The simulation results show that,the electron energy distribution f(ε)is modulated evidently within a pulse cycle,with its tail extending to higher energies during the power-on period,while shrinking back promptly in the afterglow period.Thus,the rate coefficients could be controlled during the discharge,resulting in modulation of the species composition on the substrate compared with continuous excitation.Meanwhile,more negative ions,like Si H_3^-and Si H_2^-,may escape to the electrodes owing to the collapse of ambipolar electric fields,which is beneficial to films deposition.Pulse modulation is thus expected to provide additional methods to customize the plasma densities and components.展开更多
To boost the performance of 4-ary pulse amplitude modulated(PAM) at low signal-to-noise ratio(SNR), bistable stochastic resonance(BSR) system is introduced into digital communications system and get a reliable signal ...To boost the performance of 4-ary pulse amplitude modulated(PAM) at low signal-to-noise ratio(SNR), bistable stochastic resonance(BSR) system is introduced into digital communications system and get a reliable signal detection scheme. In this paper, we first analyse BSR system for different amplitudes of 4-ary PAM signals. The steadystate of the bistable system will be statistically distinct, and the feasibility of the proposed detection scheme is confirmed. On this basis, we present a detailed study on steady-state transitions of the BSR system, and an explicit expression of the bistable system parameters is derived. By setting the bistable system parameters, bistable system, 4-ary PAM signal, and noise reach the resonance state, and the BSR-based detection scheme is implemented. Moreover, we derive an analytical expression to calculate the symbol error rate(SER) of 4-ary PAM signals with the BSR-based detection under additive white Gaussian noise(AWGN). Finally, the simulation results validate that BSR-based detection scheme can improve the detection performance while efficiently reducing the symbol error rate.展开更多
基金supported by National Natural Science Foundation of China (No.10775025)Important National Science & Technology Specific Project of China (No.2011ZX02403-001)Program for New Century Excellent Talents in University of China (NCET-08-0073)
文摘Driven by pulse modulated radio-frequency plasma in capacitively coupled discharge are studied by source, the behavior of SiH4/N2/02 using a one-dimensional fluid model. Totally, 48 different species (electrons, ions, neutrals, radicals and excited species) are involved in this simulation. Time evolution of the particle densities and electron temperature with different duty cycles are obtained, as well as the electronegativity nsiH-3 /ne of the main negative ion (Sill3 ). The results show that, by reducing the duty cycle, higher electron temperature and particle density can be achieved for the same average dissipated power, and the ion energy can also be effectively reduced, which will offer evident improvement in plasma deposition processes compared with the case of continuous wave discharge.
基金supported by National Natural Science Foundation of China(No.11275038)
文摘A one-dimensional fluid/Monte-Carlo(MC)hybrid model is developed to describe capacitively coupled SiH_4/Ar discharge,in which the lower electrode is applied by a RF source and pulse modulated by a square-wave,to investigate the modulation effects of the pulse duty cycle on the discharge mechanism.An electron Monte Carlo simulation is used to calculate the electron energy distribution as a function of position and time phase.Rate coefficients in chemical reactions can then be obtained and transferred to the fluid model for the calculation of electron temperature and densities of different species,such as electrons,ions,and radicals.The simulation results show that,the electron energy distribution f(ε)is modulated evidently within a pulse cycle,with its tail extending to higher energies during the power-on period,while shrinking back promptly in the afterglow period.Thus,the rate coefficients could be controlled during the discharge,resulting in modulation of the species composition on the substrate compared with continuous excitation.Meanwhile,more negative ions,like Si H_3^-and Si H_2^-,may escape to the electrodes owing to the collapse of ambipolar electric fields,which is beneficial to films deposition.Pulse modulation is thus expected to provide additional methods to customize the plasma densities and components.
基金supported by the National Natural Science Foundation of China (61631015, 61501354, 61501356, and 61573202)the Fundamental Research Funds of the Ministry of Education (7215433803)+5 种基金the Foundation of State Key Laboratory of Integrated Services Networks (ISN1101002)Higher School Subject Innovation Engineering Plan (B08038)Science and Technology Innovation Team Key Plan of Shaanxi Province (2016KCT-01)The Fundamental Research Funds of the Ministry of Education, China (Grant No. JB160101)The Key Laboratory Foundation of Ministry of Industry and Information Technology (KF20181912)China Postdoctoral Science Foundation (2018M631122)
文摘To boost the performance of 4-ary pulse amplitude modulated(PAM) at low signal-to-noise ratio(SNR), bistable stochastic resonance(BSR) system is introduced into digital communications system and get a reliable signal detection scheme. In this paper, we first analyse BSR system for different amplitudes of 4-ary PAM signals. The steadystate of the bistable system will be statistically distinct, and the feasibility of the proposed detection scheme is confirmed. On this basis, we present a detailed study on steady-state transitions of the BSR system, and an explicit expression of the bistable system parameters is derived. By setting the bistable system parameters, bistable system, 4-ary PAM signal, and noise reach the resonance state, and the BSR-based detection scheme is implemented. Moreover, we derive an analytical expression to calculate the symbol error rate(SER) of 4-ary PAM signals with the BSR-based detection under additive white Gaussian noise(AWGN). Finally, the simulation results validate that BSR-based detection scheme can improve the detection performance while efficiently reducing the symbol error rate.