期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多中心MRI的3D-ResNet101深度学习模型预测脑胶质瘤术前分级的研究
被引量:
2
1
作者
李大瑞
胡万均
+3 位作者
刘光耀
甘铁军
马来阳
张静
《磁共振成像》
CAS
CSCD
北大核心
2023年第5期25-30,共6页
目的 术前准确无创预测胶质瘤分级仍然具有挑战性。基于常规T2WI图像开发一种鲁棒性强的残差神经网络(Residual Networks,Res Net)深度学习模型以预测脑胶质瘤术前病理分级。材料与方法回顾性分析919例经病理证实为胶质瘤患者的术前T2W...
目的 术前准确无创预测胶质瘤分级仍然具有挑战性。基于常规T2WI图像开发一种鲁棒性强的残差神经网络(Residual Networks,Res Net)深度学习模型以预测脑胶质瘤术前病理分级。材料与方法回顾性分析919例经病理证实为胶质瘤患者的术前T2WI图像,其中708例为2014年6月至2021年4月在兰州大学第二医院收治的患者数据,211例来源于癌症影像档案(The Cancer Imaging Archive,TCIA)数据库。TCIA数据集又被细分为开发集(n=135)和独立测试集(n=76),将兰州大学第二医院数据集和TCIA开发集的数据按7∶3随机分为训练集(n=590)和测试集(n=253),基于T2WI图像构建3 D-Res Net101深度学习模型。训练后的模型在测试集和独立测试集进行验证,并通过宏观F1分数、准确率(accaruy,ACC)及受试者工作特征(receiver operating characteristic,ROC)曲线对模型效能进行评估。结果基于T2WI构建的3 D-Res Net101深度学习模型在训练集和测试集ACC分别为99%、95%,F1分数分别为99%、95%,ROC曲线下面积(area under the curve,AUC)分别为0.98、0.97;独立测试集ACC为83%、F1分数为83%、AUC为0.89。结论 基于T2WI图像的3 D-Res Net101深度学习模型预测高、低级别胶质瘤具有较高的准确性、鲁棒性。该方法可用于术前胶质瘤分级的无创预测,并有助于提升患者临床管理的有效性。
展开更多
关键词
胶质瘤
3d-残差神经网络
深度学习
磁共振成像
T2加权成像
在线阅读
下载PDF
职称材料
题名
基于多中心MRI的3D-ResNet101深度学习模型预测脑胶质瘤术前分级的研究
被引量:
2
1
作者
李大瑞
胡万均
刘光耀
甘铁军
马来阳
张静
机构
兰州大学第二医院核磁共振科
甘肃省功能及分子影像临床医学研究中心
兰州大学第二临床医学院
出处
《磁共振成像》
CAS
CSCD
北大核心
2023年第5期25-30,共6页
基金
甘肃省卫生健康行业科研项目(编号:GSWSKY2020-68)
兰州大学第二医院“萃英科技创新”项目(编号:CY2021-BJ-A05)。
文摘
目的 术前准确无创预测胶质瘤分级仍然具有挑战性。基于常规T2WI图像开发一种鲁棒性强的残差神经网络(Residual Networks,Res Net)深度学习模型以预测脑胶质瘤术前病理分级。材料与方法回顾性分析919例经病理证实为胶质瘤患者的术前T2WI图像,其中708例为2014年6月至2021年4月在兰州大学第二医院收治的患者数据,211例来源于癌症影像档案(The Cancer Imaging Archive,TCIA)数据库。TCIA数据集又被细分为开发集(n=135)和独立测试集(n=76),将兰州大学第二医院数据集和TCIA开发集的数据按7∶3随机分为训练集(n=590)和测试集(n=253),基于T2WI图像构建3 D-Res Net101深度学习模型。训练后的模型在测试集和独立测试集进行验证,并通过宏观F1分数、准确率(accaruy,ACC)及受试者工作特征(receiver operating characteristic,ROC)曲线对模型效能进行评估。结果基于T2WI构建的3 D-Res Net101深度学习模型在训练集和测试集ACC分别为99%、95%,F1分数分别为99%、95%,ROC曲线下面积(area under the curve,AUC)分别为0.98、0.97;独立测试集ACC为83%、F1分数为83%、AUC为0.89。结论 基于T2WI图像的3 D-Res Net101深度学习模型预测高、低级别胶质瘤具有较高的准确性、鲁棒性。该方法可用于术前胶质瘤分级的无创预测,并有助于提升患者临床管理的有效性。
关键词
胶质瘤
3d-残差神经网络
深度学习
磁共振成像
T2加权成像
Keywords
glioma
3
d-
Residual Networks
deep learning
magnetic resonance imaging
T2 weighted imaging
分类号
R445.2 [医药卫生—影像医学与核医学]
R730.264 [医药卫生—肿瘤]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多中心MRI的3D-ResNet101深度学习模型预测脑胶质瘤术前分级的研究
李大瑞
胡万均
刘光耀
甘铁军
马来阳
张静
《磁共振成像》
CAS
CSCD
北大核心
2023
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部