Two-dimensional(2D)metal organic frameworks(MOFs)are emerging as low-cost oxygen evolution reaction(OER)electrocatalysts,however,suffering aggregation and poor operation stability.Herein,ultrafine Fe_(3)O_(4) nanopart...Two-dimensional(2D)metal organic frameworks(MOFs)are emerging as low-cost oxygen evolution reaction(OER)electrocatalysts,however,suffering aggregation and poor operation stability.Herein,ultrafine Fe_(3)O_(4) nanoparticles(diameter:6±2 nm)are homogeneously immobilized on 2D Ni based MOFs(Ni-BDC,thickness:5±1 nm)to improve the OER stability.Electronic structure modulation for enhanced catalytic activity is studied via adjusting the amount of Fe_(3)O_(4) nanoparticles on Ni-BDC.The optimal Fe_(3)O_(4)/Ni-BDC achieves the best OER performance with an overpotential of 295 mV at 10 mA cm^(-2),a Tafel slope of 47.8 mV dec^(-1) and a considerable catalytic durability of more than 40 h(less than 5 h for Ni-BDC alone).DFT calculations confirm that the active sites for Fe_(3)O_(4)/Ni-BDC are mainly contributed by Fe species with a higher oxidation state,and the potential-determining step(PDS)is the formation of the adsorbed O*species,which are facilitated in the composite.展开更多
Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module. The 3D-printed concentrator is optically designe...Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module. The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%. Additionally, with the 3D-printed microfluidic device serving as water cooling, the temperature of the DSC can be effectively controlled, which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module. Moreover, the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%. The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition.展开更多
As electronic packages become more compact, run at faster speeds and dissipate more heat, package designers need more effective thermal management materials. CVD diamond, because of its high thermal conductivity, low ...As electronic packages become more compact, run at faster speeds and dissipate more heat, package designers need more effective thermal management materials. CVD diamond, because of its high thermal conductivity, low dielectric loss and its great mechanical strength, is an excellent material for three dimensional (319) multichip modules (MCMs) in the next generation compact high speed computers and high power microwave components. In this paper, we have synthesized a large area freestanding diamond films and substrates, and polished diamond substrates, which make MCMs diamond film sink becomes a reality.展开更多
三维收发(T/R)组件具有小型化、重量轻和可扩充等特点,成为T/R组件技术的重要发展方向之一。本文对一种基于低温共烧陶瓷(LTCC)的Ku波段小型化三维T/R组件进行了研究,通过分析优化组件的垂直微波互连技术、电路布局优化及无源等效模型,...三维收发(T/R)组件具有小型化、重量轻和可扩充等特点,成为T/R组件技术的重要发展方向之一。本文对一种基于低温共烧陶瓷(LTCC)的Ku波段小型化三维T/R组件进行了研究,通过分析优化组件的垂直微波互连技术、电路布局优化及无源等效模型,设计出具有优良电性能(输出功率≥24.5 d Bm,接收增益大于≥25 d B,接收噪声系数≤3.5 d B)的小型化三维T/R组件。该组件利用LTCC高密度布线、球栅阵列(BGA)高密度连接优点,把组件设计成三层层叠结构,并且把部分芯片集成于"多功能芯片",进一步缩小了尺寸,单个组件尺寸为9.5 mm×9.5 mm×3.8 mm,有效实现了T/R组件的小型化。展开更多
基金support from the Chinese Scholarship Council(201706220080)for W.H.the Natural Science Foundation of Hunan Province(2019JJ50526)for C.P.+1 种基金The Danish Council for Independent Research for the YDUN project(DFF 4093-00297)to J.Z.Villum Experiment(grant No.35844)for X.X.
文摘Two-dimensional(2D)metal organic frameworks(MOFs)are emerging as low-cost oxygen evolution reaction(OER)electrocatalysts,however,suffering aggregation and poor operation stability.Herein,ultrafine Fe_(3)O_(4) nanoparticles(diameter:6±2 nm)are homogeneously immobilized on 2D Ni based MOFs(Ni-BDC,thickness:5±1 nm)to improve the OER stability.Electronic structure modulation for enhanced catalytic activity is studied via adjusting the amount of Fe_(3)O_(4) nanoparticles on Ni-BDC.The optimal Fe_(3)O_(4)/Ni-BDC achieves the best OER performance with an overpotential of 295 mV at 10 mA cm^(-2),a Tafel slope of 47.8 mV dec^(-1) and a considerable catalytic durability of more than 40 h(less than 5 h for Ni-BDC alone).DFT calculations confirm that the active sites for Fe_(3)O_(4)/Ni-BDC are mainly contributed by Fe species with a higher oxidation state,and the potential-determining step(PDS)is the formation of the adsorbed O*species,which are facilitated in the composite.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21103194,51506205,and 21673243)the Science and Technology Planning Project of Guangdong Province,China(Grant Nos.2014A010106018 and 2013A011401011)+3 种基金the Guangdong-Hong Kong Joint Innovation Project of Guangdong Province,China(Grant No.2014B050505015)the Special Support Program of Guangdong Province,China(Grant No.2014TQ01N610)the Director Innovation Foundation of Guangzhou Institute of Energy Conversion,China(Grant No.y307p81001)the Solar Photothermal Advanced Materials Engineering Research Center Construction Project of Guangdong Province,China(Grant No.2014B090904071)
文摘Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module. The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%. Additionally, with the 3D-printed microfluidic device serving as water cooling, the temperature of the DSC can be effectively controlled, which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module. Moreover, the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%. The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition.
基金Supported by National Natural Science Foundation of China (No.60371006)
文摘As electronic packages become more compact, run at faster speeds and dissipate more heat, package designers need more effective thermal management materials. CVD diamond, because of its high thermal conductivity, low dielectric loss and its great mechanical strength, is an excellent material for three dimensional (319) multichip modules (MCMs) in the next generation compact high speed computers and high power microwave components. In this paper, we have synthesized a large area freestanding diamond films and substrates, and polished diamond substrates, which make MCMs diamond film sink becomes a reality.
文摘三维收发(T/R)组件具有小型化、重量轻和可扩充等特点,成为T/R组件技术的重要发展方向之一。本文对一种基于低温共烧陶瓷(LTCC)的Ku波段小型化三维T/R组件进行了研究,通过分析优化组件的垂直微波互连技术、电路布局优化及无源等效模型,设计出具有优良电性能(输出功率≥24.5 d Bm,接收增益大于≥25 d B,接收噪声系数≤3.5 d B)的小型化三维T/R组件。该组件利用LTCC高密度布线、球栅阵列(BGA)高密度连接优点,把组件设计成三层层叠结构,并且把部分芯片集成于"多功能芯片",进一步缩小了尺寸,单个组件尺寸为9.5 mm×9.5 mm×3.8 mm,有效实现了T/R组件的小型化。