因为它的 insensitivity, 3D 脸识别吸引越来越多的注意到照明和姿势的变化。有在这个话题要解决的许多关键问题,例如 3D 脸表示和有效多特征熔化。在这份报纸,一个新奇 3D 脸识别算法被建议,它的性能在 BJUT-3D 脸数据库上被表明...因为它的 insensitivity, 3D 脸识别吸引越来越多的注意到照明和姿势的变化。有在这个话题要解决的许多关键问题,例如 3D 脸表示和有效多特征熔化。在这份报纸,一个新奇 3D 脸识别算法被建议,它的性能在 BJUT-3D 脸数据库上被表明。这个算法选择脸表面性质和相对关系矩阵的原则部件为脸表示特征。为每个特征的类似公制被定义。特征熔化策略被建议。它基于菲希尔是线性加权的策略线性判别式分析。最后,介绍算法在 BJUT-3D 脸数据库上被测试。算法和熔化策略的表演是令人满意的,这被结束。展开更多
Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D mes...Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis(PCA).Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes.展开更多
基金Supported by National Natural Science Foundation of China (60533030) and Beijing Natural Science Foundation (4061001)
文摘因为它的 insensitivity, 3D 脸识别吸引越来越多的注意到照明和姿势的变化。有在这个话题要解决的许多关键问题,例如 3D 脸表示和有效多特征熔化。在这份报纸,一个新奇 3D 脸识别算法被建议,它的性能在 BJUT-3D 脸数据库上被表明。这个算法选择脸表面性质和相对关系矩阵的原则部件为脸表示特征。为每个特征的类似公制被定义。特征熔化策略被建议。它基于菲希尔是线性加权的策略线性判别式分析。最后,介绍算法在 BJUT-3D 脸数据库上被测试。算法和熔化策略的表演是令人满意的,这被结束。
基金Project(XDA06020300)supported by the"Strategic Priority Research Program"of the Chinese Academy of SciencesProject(12511501700)supported by the Research on the Key Technology of Internet of Things for Urban Community Safety Based on Video Sensor networks
文摘Expression, occlusion, and pose variations are three main challenges for 3D face recognition. A novel method is presented to address 3D face recognition using scale-invariant feature transform(SIFT) features on 3D meshes. After preprocessing, shape index extrema on the 3D facial surface are selected as keypoints in the difference scale space and the unstable keypoints are removed after two screening steps. Then, a local coordinate system for each keypoint is established by principal component analysis(PCA).Next, two local geometric features are extracted around each keypoint through the local coordinate system. Additionally, the features are augmented by the symmetrization according to the approximate left-right symmetry in human face. The proposed method is evaluated on the Bosphorus, BU-3DFE, and Gavab databases, respectively. Good results are achieved on these three datasets. As a result, the proposed method proves robust to facial expression variations, partial external occlusions and large pose changes.