骨盆CT影像精确分割是骨盆骨疾病的临床诊断和手术规划中非常重要的环节。针对目前2D骨盆分割方法对三维医学影像进行切片处理时损失空间信息的问题,提出了改进3D U-Net网络实现对骨盆CT影像3D自动分割。实验数据为公开数据集CTPelvic1K...骨盆CT影像精确分割是骨盆骨疾病的临床诊断和手术规划中非常重要的环节。针对目前2D骨盆分割方法对三维医学影像进行切片处理时损失空间信息的问题,提出了改进3D U-Net网络实现对骨盆CT影像3D自动分割。实验数据为公开数据集CTPelvic1K共1184名患者骨盆CT影像,其中包含骶骨、左髋骨、右髋骨和腰椎四个部位标签。以3D U-Net骨干网络为基础,结合自注意力机制提出3D多类分割模型3D Trans U-Net,并使用迁移学习训练3D U-Net、V-Net、Attention U-Net作为对照实验。实验结果表明:3D Trans U-Net在测试集上整个骨盆区域、骶骨、左髋骨、右髋骨、腰椎Dice系数分别达到97.99%,96.70%,97.96%,97.95%,96.89%;Dice系数、豪斯多夫距离等评价指标均优于现有经典网络3D U-Net、V-Net、Attention U-Net。因此,改进的3D Trans U-Net对骨盆不同部位具有较好的分割效果,为精准医治骨盆骨疾病提供了一条有效的技术途径。展开更多
为了实现火龙果采收自动化作业,提出一种基于改进U-Net的火龙果图像分割和姿态估计方法。首先,在U-Net模型的跳跃连接(编码器与解码器部分特征图进行的连接操作)中引入通道和空间注意力机制模块(Concurrent spatial and channel squeeze...为了实现火龙果采收自动化作业,提出一种基于改进U-Net的火龙果图像分割和姿态估计方法。首先,在U-Net模型的跳跃连接(编码器与解码器部分特征图进行的连接操作)中引入通道和空间注意力机制模块(Concurrent spatial and channel squeeze and channel excitation,SCSE),同时将SCSE模块集成到残差模块(Double residual block,DRB)中,在增强网络提取有效特征能力的同时提高网络的收敛速度,得到一种基于注意力残差U-Net的火龙果图像分割网络。通过该网络分割出果实及其附生枝条的掩膜图像,利用图像处理技术和相机成像模型拟合出果实及其附生枝条的轮廓、果实质心、果实最小外接矩形框和三维边界框,进而结合果实及其附生枝条的位置关系进行火龙果三维姿态估计,并在火龙果种植园中获得一个测试集,以评价该算法的性能,最后在自然果园环境下进行实地采摘试验。试验结果表明,火龙果果实图像分割平均交并比(mIoU)和平均像素准确率(mPA)分别达到86.69%和93.89%,三维姿态估计平均误差为8.8°,火龙果采摘机器人在果园环境下的采摘成功率为86.7%,平均采摘时间为22.3 s。满足火龙果机械化作业要求。展开更多
文摘骨盆CT影像精确分割是骨盆骨疾病的临床诊断和手术规划中非常重要的环节。针对目前2D骨盆分割方法对三维医学影像进行切片处理时损失空间信息的问题,提出了改进3D U-Net网络实现对骨盆CT影像3D自动分割。实验数据为公开数据集CTPelvic1K共1184名患者骨盆CT影像,其中包含骶骨、左髋骨、右髋骨和腰椎四个部位标签。以3D U-Net骨干网络为基础,结合自注意力机制提出3D多类分割模型3D Trans U-Net,并使用迁移学习训练3D U-Net、V-Net、Attention U-Net作为对照实验。实验结果表明:3D Trans U-Net在测试集上整个骨盆区域、骶骨、左髋骨、右髋骨、腰椎Dice系数分别达到97.99%,96.70%,97.96%,97.95%,96.89%;Dice系数、豪斯多夫距离等评价指标均优于现有经典网络3D U-Net、V-Net、Attention U-Net。因此,改进的3D Trans U-Net对骨盆不同部位具有较好的分割效果,为精准医治骨盆骨疾病提供了一条有效的技术途径。