期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Point Cloud Processing Methods for 3D Point Cloud Detection Tasks
1
作者 WANG Chongchong LI Yao +2 位作者 WANG Beibei CAO Hong ZHANG Yanyong 《ZTE Communications》 2023年第4期38-46,共9页
Light detection and ranging(LiDAR)sensors play a vital role in acquiring 3D point cloud data and extracting valuable information about objects for tasks such as autonomous driving,robotics,and virtual reality(VR).Howe... Light detection and ranging(LiDAR)sensors play a vital role in acquiring 3D point cloud data and extracting valuable information about objects for tasks such as autonomous driving,robotics,and virtual reality(VR).However,the sparse and disordered nature of the 3D point cloud poses significant challenges to feature extraction.Overcoming limitations is critical for 3D point cloud processing.3D point cloud object detection is a very challenging and crucial task,in which point cloud processing and feature extraction methods play a crucial role and have a significant impact on subsequent object detection performance.In this overview of outstanding work in object detection from the 3D point cloud,we specifically focus on summarizing methods employed in 3D point cloud processing.We introduce the way point clouds are processed in classical 3D object detection algorithms,and their improvements to solve the problems existing in point cloud processing.Different voxelization methods and point cloud sampling strategies will influence the extracted features,thereby impacting the final detection performance. 展开更多
关键词 point cloud processing 3D object detection point cloud voxelization bird's eye view deep learning
在线阅读 下载PDF
基于改进柱形特征编码的单阶段目标检测算法
2
作者 罗玉涛 毛浩杰 《华南理工大学学报(自然科学版)》 北大核心 2025年第3期1-11,共11页
基于柱形(Pillar)的单阶段点云3维目标检测算法凭借其较高的运行效率,在工业界得到了广泛的关注和应用。但对点云柱形量化造成的点云3维特征细粒度信息损失,导致这类算法对稀疏点云小目标的检测能力较弱。尽管部分研究对此问题提出了应... 基于柱形(Pillar)的单阶段点云3维目标检测算法凭借其较高的运行效率,在工业界得到了广泛的关注和应用。但对点云柱形量化造成的点云3维特征细粒度信息损失,导致这类算法对稀疏点云小目标的检测能力较弱。尽管部分研究对此问题提出了应对方法,但通常以较高的检测时间成本或者大目标检测精度作为代价。为此,该文提出了一种基于改进柱形特征编码的柱形点云目标检测算法。首先,构建可实现柱形单元内部点云局部与全局特征相结合的柱形特征编码网络,用于增强柱形量化特征的表征能力;然后,设计一个由2维稀疏卷积块与特征融合网络相结合的主干网络,用于融合多尺度的高级抽象语义特征和低级细粒度空间特征,防止过度关注小尺寸特征而降低大目标的检测性能;最后,在KITTI自动驾驶数据集上进行训练和测试,并对实验结果进行了可视化和消融研究。结果显示:所提算法在KITTI数据集的中等难度下,多个类别的平均精度均值达63.54%、平均方向相似性均值达70.72%,平均检测帧速率达31.5 f/s;与PointPillars、TANet和PiFEnet算法相比,该文算法的平均精度均值分别提高了2.44、2.05和2.38个百分点,平均方向相似性均值分别提高了4.69、0.68和7.83个百分点,在同类算法的对比中表现出工程应用潜力。 展开更多
关键词 智能汽车 3维目标检测 点云 柱形特征编码
在线阅读 下载PDF
Development of vehicle-recognition method on water surfaces using LiDAR data:SPD^(2)(spherically stratified point projection with diameter and distance)
3
作者 Eon-ho Lee Hyeon Jun Jeon +2 位作者 Jinwoo Choi Hyun-Taek Choi Sejin Lee 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期95-104,共10页
Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface ... Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework. 展开更多
关键词 object classification Clustering 3D point cloud data LiDAR(light detection and ranging) Surface vehicle
在线阅读 下载PDF
V2I Based Environment Perception for Autonomous Vehicles at Intersections 被引量:5
4
作者 Xuting Duan Hang Jiang +3 位作者 Daxin Tian Tianyuan Zou Jianshan Zhou Yue Cao 《China Communications》 SCIE CSCD 2021年第7期1-12,共12页
In recent years,autonomous driving technology has made good progress,but the noncooperative intelligence of vehicle for autonomous driving still has many technical bottlenecks when facing urban road autonomous driving... In recent years,autonomous driving technology has made good progress,but the noncooperative intelligence of vehicle for autonomous driving still has many technical bottlenecks when facing urban road autonomous driving challenges.V2I(Vehicle-to-Infrastructure)communication is a potential solution to enable cooperative intelligence of vehicles and roads.In this paper,the RGB-PVRCNN,an environment perception framework,is proposed to improve the environmental awareness of autonomous vehicles at intersections by leveraging V2I communication technology.This framework integrates vision feature based on PVRCNN.The normal distributions transform(NDT)point cloud registration algorithm is deployed both on onboard and roadside to obtain the position of the autonomous vehicles and to build the local map objects detected by roadside multi-sensor system are sent back to autonomous vehicles to enhance the perception ability of autonomous vehicles for benefiting path planning and traffic efficiency at the intersection.The field-testing results show that our method can effectively extend the environmental perception ability and range of autonomous vehicles at the intersection and outperform the PointPillar algorithm and the VoxelRCNN algorithm in detection accuracy. 展开更多
关键词 V2I environmental perception autonomous vehicles 3D objects detection
在线阅读 下载PDF
HPLC测定金鸡菊中金鸡菊查尔酮含量 被引量:3
5
作者 张兰兰 孙玉华 +4 位作者 哈木拉提 徐磊 庞市宾 刘晓燕 胡梦颖 《中国中医药信息杂志》 CAS CSCD 2012年第7期48-49,共2页
目的建立高效液相色谱法测定金鸡菊中金鸡菊查尔酮含量的方法。方法采用Inertsil ODS-3 C18柱(4.6 mm×250 mm,5μm),以乙腈-1%冰醋酸(80∶20)为流动相,流速1.0 mL/min,检测波长378 nm。结果金鸡菊查尔酮在0.4~4.0μg范围内与峰面... 目的建立高效液相色谱法测定金鸡菊中金鸡菊查尔酮含量的方法。方法采用Inertsil ODS-3 C18柱(4.6 mm×250 mm,5μm),以乙腈-1%冰醋酸(80∶20)为流动相,流速1.0 mL/min,检测波长378 nm。结果金鸡菊查尔酮在0.4~4.0μg范围内与峰面积呈良好线性关系,回归方程为Y=31 213X-149 303(r=0.999 9),平均回收率为99.21%,RSD=1.70%(n=5)。结论本方法简便、准确、重复性好,可用于金鸡菊的质量控制。 展开更多
关键词 金鸡菊 查尔酮 高效液相色谱法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部