期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于中心锚困难三元组损失和多视图特征融合的三维模型分类
1
作者 高雪瑶 张澐凯 张春祥 《电子与信息学报》 北大核心 2025年第6期1937-1949,共13页
多视图可以全面表征3维模型的视觉特性以及潜在的空间结构信息,但现有方法容易忽视不同视图间的差异性和互补性。针对上述问题,该文提出一种基于中心锚困难3元组损失和多视图特征融合的3维模型分类方法。首先,以3维模型的多视图集为输入... 多视图可以全面表征3维模型的视觉特性以及潜在的空间结构信息,但现有方法容易忽视不同视图间的差异性和互补性。针对上述问题,该文提出一种基于中心锚困难3元组损失和多视图特征融合的3维模型分类方法。首先,以3维模型的多视图集为输入,利用深度残差收缩网络(DRSN)提取视图特征并融合2维形状分布特征D1,D2和D3得到视图融合特征;其次,根据3维模型视图融合特征,通过香农熵来衡量视图分类的不确定性,并将3维模型的多视图按视图显著性由高到低排序;然后,搭建基于注意力-长短期记忆网络(Att-LSTM)的3元组多视图特征融合网络,利用LSTM学习多视图之间的上下文信息,并融入多头注意力机制充分捕捉多视图间的相关信息;最后,引入度量学习并提出了一种新颖的中心锚困难3元组损失(CAH Triplet Loss),并联合交叉熵损失(CE Loss)来优化多视图特征融合网络,减小同类样本、增大异类样本在特征空间上的距离,加强网络对3维模型区分性特征的学习。实验表明:该方法在3维模型数据集ModelNet10上的分类准确率达到93.83%,分类性能突出。 展开更多
关键词 3维模型分类 多视图特征融合 注意力机制 3元组损失
在线阅读 下载PDF
基于香农熵代表性特征和投票机制的三维模型分类
2
作者 高雪瑶 闫少康 张春祥 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第4期1438-1447,共10页
目前基于视图的3维模型分类方法存在单视图视觉信息不充分、多视图信息冗余的问题,且同等对待所有视图会忽略不同投影视角之间的差异性。针对上述问题,该文提出一种基于香农熵代表性特征和投票机制的3维模型分类方法。首先,通过在3维模... 目前基于视图的3维模型分类方法存在单视图视觉信息不充分、多视图信息冗余的问题,且同等对待所有视图会忽略不同投影视角之间的差异性。针对上述问题,该文提出一种基于香农熵代表性特征和投票机制的3维模型分类方法。首先,通过在3维模型周围均匀设置多个视角组来获取表征模型的多组视图集。为了有效提取视图深层特征,在特征提取网络中引入通道注意力机制;然后,针对Softmax函数输出的视图判别性特征,使用香农熵来选择代表性特征,从而避免多视图特征冗余;最后,基于多个视角组的代表性特征利用投票机制来完成3维模型分类。实验表明:该方法在3维模型数据集ModelNet10上的分类准确率达到96.48%,分类性能突出。 展开更多
关键词 3维模型分类 注意力机制 香农熵代表性特征 投票机制
在线阅读 下载PDF
语义增强图像-文本预训练模型的零样本三维模型分类
3
作者 丁博 张立宝 +1 位作者 秦健 何勇军 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第8期3314-3323,共10页
目前,基于对比学习的图像-文本预训练模型(CLIP)在零样本3维模型分类任务上表现出了巨大潜力,然而3维模型和文本之间存在巨大的模态鸿沟,影响了分类准确率的进一步提高。针对以上问题,该文提出一种语义增强CLIP的零样本3维模型分类方法... 目前,基于对比学习的图像-文本预训练模型(CLIP)在零样本3维模型分类任务上表现出了巨大潜力,然而3维模型和文本之间存在巨大的模态鸿沟,影响了分类准确率的进一步提高。针对以上问题,该文提出一种语义增强CLIP的零样本3维模型分类方法。该方法首先将3维模型表示成多视图;然后为了增强零样本学习对未知类别的识别能力,通过视觉语言生成模型获得每张视图及其类别的语义描述性文本,并将其作为视图和类别提示文本之间的语义桥梁,语义描述性文本采用图像字幕和视觉问答两种方式获取;最后微调语义编码器将语义描述性文本具化为类别的语义描述,其拥有丰富的语义信息和较好的可解释性,有效减小了视图和类别提示文本的语义鸿沟。实验表明,该文方法在ModelNet10和ModelNet40数据集上的分类性能优于现有的零样本分类方法。 展开更多
关键词 3维模型分类 零样本 基于对比学习的图像-文本预训练模型 语义描述性文本
在线阅读 下载PDF
基于视点差异和多分类器的三维模型分类
4
作者 丁博 范宇飞 +1 位作者 高源 何勇军 《电子与信息学报》 EI CSCD 北大核心 2022年第11期3977-3986,共10页
基于视图的3维模型分类方法与深度学习融合能有效提升模型分类的准确率。但目前的方法将相同类别的3维模型所有视点上的视图归为一类,忽略了不同视点上的视图差异,导致分类器很难学习到一个合理的分类面。为解决这一问题,该文提出一个... 基于视图的3维模型分类方法与深度学习融合能有效提升模型分类的准确率。但目前的方法将相同类别的3维模型所有视点上的视图归为一类,忽略了不同视点上的视图差异,导致分类器很难学习到一个合理的分类面。为解决这一问题,该文提出一个基于深度神经网络的3维模型分类方法。该方法在3维模型的周围均匀设置多个视点组,为每个视点组训练1个视图分类器,充分挖掘不同视点组下的3维模型深度信息。这些分类器共享1个特征提取网络,但却有各自的分类网络。为了使提取的视图特征具有区分性,在特征提取网络中加入注意力机制;为了对非本视点组的视图建模,在分类网络中增加了附加类。在分类阶段首先提出一个视图选择策略,从大量视图中选择少量视图用于分类,以提高分类效率。然后提出一个分类策略通过分类视图实现可靠的3维模型分类。在ModelNet10和ModelNet40上的实验结果表明,该方法在仅用3张视图的情况下分类准确率高达93.6%和91.0%。 展开更多
关键词 3维模型分类 卷积神经网络 视点差异 分类 注意力机制
在线阅读 下载PDF
面向3D打印的模型优化研究综述 被引量:5
5
作者 毛羽忻 毋立芳 +2 位作者 邱健康 赵立东 郭小华 《兵工自动化》 2017年第8期27-32,共6页
在设计可3D打印模型时常常会较少考虑模型自身的物理因素,导致实际打印模型时出现如模型表面极易产生断裂、打印出的实体重心不稳以及一些受力等问题,这些问题可依据3D打印工艺特点对3维模型优化得以解决。目前3维模型优化研究可分为:... 在设计可3D打印模型时常常会较少考虑模型自身的物理因素,导致实际打印模型时出现如模型表面极易产生断裂、打印出的实体重心不稳以及一些受力等问题,这些问题可依据3D打印工艺特点对3维模型优化得以解决。目前3维模型优化研究可分为:基于力学特征分析的模型优化、面向模型可打印的支撑结构优化与面向模型可打印的模型分割优化。结合相关文献的观点及其研究工作,从上述3方面分类介绍当前基于3D打印模型优化的方法、技术及特点。在分析研究基础上,提出未来面向3D打印的模型优化技术方法发展的新趋势。该研究成果可为相关3D打印技术研究提供参考。 展开更多
关键词 3D打印 3建模 3模型优化分类 力学特性分析 支撑结构 模型分割
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部