局部遮阴条件下光伏阵列的功率-电压特性曲线出现多个峰值,传统最大功率点跟踪(maximum power point tracking, MPPT)技术无法准确追踪到全局最大功率点。针对该问题提出一种基于改进算术优化算法(improved arithmetic optimization alg...局部遮阴条件下光伏阵列的功率-电压特性曲线出现多个峰值,传统最大功率点跟踪(maximum power point tracking, MPPT)技术无法准确追踪到全局最大功率点。针对该问题提出一种基于改进算术优化算法(improved arithmetic optimization algorithm, IAOA)的MPPT控制方法。首先,采用Sobol序列生成均匀分布的初始种群,增加种群多样性。其次,为了平衡算术优化算法(arithmetic optimization algorithm, AOA)的全局搜索和局部开发能力,对AOA中数学优化器加速函数的权重进行重构。最后,在AOA的位置更新中引入Lévy飞行策略,并将准反向学习用于每次更新后的最佳解,增强了算法的收敛速度和跳出局部最优的能力。仿真和实验结果表明,将改进后的算法应用于MPPT控制中,能够在不同的局部遮阴及光照突变条件下准确、快速地跟踪到全局最大功率点,且功率振荡小。展开更多
针对传统的最大功率点跟踪MPPT(maximum power point tracking)方法在部分遮阴条件下陷入局部最优而失效,且常见的智能优化算法往往存在收敛精度差、收敛速度慢、系统稳定性不高等问题,提出1种基于旗鱼优化SFO(sailfish optimization)...针对传统的最大功率点跟踪MPPT(maximum power point tracking)方法在部分遮阴条件下陷入局部最优而失效,且常见的智能优化算法往往存在收敛精度差、收敛速度慢、系统稳定性不高等问题,提出1种基于旗鱼优化SFO(sailfish optimization)算法与扰动观察P&O(perturbation and observation)法混合控制的光伏系统最大功率跟踪策略。SFO算法同时使用旗鱼(捕食者)和沙丁鱼(猎物)2个种群,可保证粒子在全局空间探索。所提混合算法先利用SFO算法快速跟踪到最大功率点附近,再利用小步长P&O法对最大功率点进行精细搜索,最后利用分段步长的方法同时兼顾MPPT搜索速度和搜索精度的要求。仿真结果表明,所提混合控制策略有效提升了控制系统的响应速度及跟踪精度,提升了系统的稳定性。展开更多
实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群...实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群(Particle swarm optimization, PSO)等群搜索算法应用在MPPT控制过程中,虽然能够控制工作点稳定在全局最大功率点处,但由于该算法收敛能力依赖于核心参数,在应用过程中有一定概率会导致系统振荡。针对以上问题,在电导增量法(Incremental conductance, INC)的基础上提出跃变探索式电导增量法(Jump explore incremental conductance, JEINC),相较于传统电导增量法而言,具有较强的探索能力,能够在局部阴影下实现全局最大功率点跟踪控制,同时所提算法具有较好的收敛能力,在工作点位于最大功率点附近能够快速稳定。在三种光照环境下进行Matlab仿真,从稳定时间、暂态过程能量损耗率和振荡幅值三个方面验证了所提算法相较于电导增量法和粒子群算法的优越性。展开更多
局部阴影情况下,光伏阵列功率-电压(P-U)特性曲线呈现多个极值点,传统的最大功率点跟踪(maximum power point tracking,MPPT)方法会失效。研究了粒子群优化算法(particle swarm optimization,PSO)在光伏阵列(photovoltaic array)多峰MPP...局部阴影情况下,光伏阵列功率-电压(P-U)特性曲线呈现多个极值点,传统的最大功率点跟踪(maximum power point tracking,MPPT)方法会失效。研究了粒子群优化算法(particle swarm optimization,PSO)在光伏阵列(photovoltaic array)多峰MPPT中的应用,该方法根据多峰P-U曲线的特性,提出将粒子初始位置分散定位在可能的峰值点电压处这一新思路,保证了粒子群算法不会陷入局部极值点且不会错过任何极值点。设置了粒子群算法的参数,同时提出有效的迭代终止策略,能够避免系统趋于稳定时的功率振荡。最后通过仿真验证了该算法在有、无阴影情况下均能够快速且准确地跟踪最大功率点,有效地提高了光伏阵列输出效率。展开更多
光伏电池的输出功率特性随着外界环境的改变而变化。为使光伏阵列得以高效利用,需要对光伏并网系统进行最大功率点跟踪。提出了一种滞环比较法和最优梯度法相结合的最大功率点跟踪(maximum power point tracking,MPPT)算法,它很好地克...光伏电池的输出功率特性随着外界环境的改变而变化。为使光伏阵列得以高效利用,需要对光伏并网系统进行最大功率点跟踪。提出了一种滞环比较法和最优梯度法相结合的最大功率点跟踪(maximum power point tracking,MPPT)算法,它很好地克服了最大功率点跟踪过程中的振荡和误判问题。为了验证该算法的有效性,在PSCAD/EMTDC软件平台上搭建了三相单级式光伏并网仿真系统,对常规的定步长扰动观察法和改进算法进行了仿真对比分析。结果表明:改进后的MPPT算法能有效消除直流电压的扰动纹波;当外界环境突变时,系统能快速稳定在新的最大功率点。展开更多
文摘针对传统的最大功率点跟踪MPPT(maximum power point tracking)方法在部分遮阴条件下陷入局部最优而失效,且常见的智能优化算法往往存在收敛精度差、收敛速度慢、系统稳定性不高等问题,提出1种基于旗鱼优化SFO(sailfish optimization)算法与扰动观察P&O(perturbation and observation)法混合控制的光伏系统最大功率跟踪策略。SFO算法同时使用旗鱼(捕食者)和沙丁鱼(猎物)2个种群,可保证粒子在全局空间探索。所提混合算法先利用SFO算法快速跟踪到最大功率点附近,再利用小步长P&O法对最大功率点进行精细搜索,最后利用分段步长的方法同时兼顾MPPT搜索速度和搜索精度的要求。仿真结果表明,所提混合控制策略有效提升了控制系统的响应速度及跟踪精度,提升了系统的稳定性。
文摘实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群(Particle swarm optimization, PSO)等群搜索算法应用在MPPT控制过程中,虽然能够控制工作点稳定在全局最大功率点处,但由于该算法收敛能力依赖于核心参数,在应用过程中有一定概率会导致系统振荡。针对以上问题,在电导增量法(Incremental conductance, INC)的基础上提出跃变探索式电导增量法(Jump explore incremental conductance, JEINC),相较于传统电导增量法而言,具有较强的探索能力,能够在局部阴影下实现全局最大功率点跟踪控制,同时所提算法具有较好的收敛能力,在工作点位于最大功率点附近能够快速稳定。在三种光照环境下进行Matlab仿真,从稳定时间、暂态过程能量损耗率和振荡幅值三个方面验证了所提算法相较于电导增量法和粒子群算法的优越性。
文摘局部阴影情况下,光伏阵列功率-电压(P-U)特性曲线呈现多个极值点,传统的最大功率点跟踪(maximum power point tracking,MPPT)方法会失效。研究了粒子群优化算法(particle swarm optimization,PSO)在光伏阵列(photovoltaic array)多峰MPPT中的应用,该方法根据多峰P-U曲线的特性,提出将粒子初始位置分散定位在可能的峰值点电压处这一新思路,保证了粒子群算法不会陷入局部极值点且不会错过任何极值点。设置了粒子群算法的参数,同时提出有效的迭代终止策略,能够避免系统趋于稳定时的功率振荡。最后通过仿真验证了该算法在有、无阴影情况下均能够快速且准确地跟踪最大功率点,有效地提高了光伏阵列输出效率。
文摘光伏电池的输出功率特性随着外界环境的改变而变化。为使光伏阵列得以高效利用,需要对光伏并网系统进行最大功率点跟踪。提出了一种滞环比较法和最优梯度法相结合的最大功率点跟踪(maximum power point tracking,MPPT)算法,它很好地克服了最大功率点跟踪过程中的振荡和误判问题。为了验证该算法的有效性,在PSCAD/EMTDC软件平台上搭建了三相单级式光伏并网仿真系统,对常规的定步长扰动观察法和改进算法进行了仿真对比分析。结果表明:改进后的MPPT算法能有效消除直流电压的扰动纹波;当外界环境突变时,系统能快速稳定在新的最大功率点。