期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
一种基于2D-CNN深度学习的钻井事故等级预测新方法 被引量:5
1
作者 赵春兰 屈瑶 +4 位作者 王兵 范翔宇 赵鹏斐 李屹 何婷 《天然气工业》 EI CAS CSCD 北大核心 2022年第12期95-105,共11页
鉴于钻井安全事故分级风险评价过程中,存在安全事故风险指标较少且多为2分类预测的实际问题。为此,在利用模糊C均值算法确定钻井事故等级的分类的基础上,根据信息增益值对多维事故风险指标进行一次降维;进而将降维后的风险指标作为模型... 鉴于钻井安全事故分级风险评价过程中,存在安全事故风险指标较少且多为2分类预测的实际问题。为此,在利用模糊C均值算法确定钻井事故等级的分类的基础上,根据信息增益值对多维事故风险指标进行一次降维;进而将降维后的风险指标作为模型输入,由卷积层提取事故特征,池化层进行二次降维,构建双层2D-CNN的事故等级预测模型,最后通过激活函数(Softmax)判断钻井事故等级,提出一种基于二维卷积神经网络(2D-CNN)的钻井事故等级预测的新方法。研究结果表明:①较之于其他方法,新方法经过两次降维将多维钻井事故指标由73维降低至4维,降低模型计算复杂度;②不同于钻井事故发生与否的二分类问题,根据事故的严重程度划分成四种事故等级,以实现多分类预测;③现场应用效果表明,新方法的准确率为91.7%,损失值为0.409,预测效果优于BP神经网络模型和1D-CNN模型。结论认为,新方法能较好地将现场作业数据用于钻井事故等级的预测,对于钻井事故风险分级评价具有广泛应用和推广价值。 展开更多
关键词 多维钻井事故 事故等级 多分类预测 深度学习 二维卷积神经网络 模糊C均值算法 信息增益
在线阅读 下载PDF
基于GADF与2D CNN-改进SVM的道岔故障诊断方法研究 被引量:4
2
作者 王彦快 孟佳东 +2 位作者 张玉 杨建刚 王贵强 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第7期2944-2956,共13页
针对道岔故障特征不易提取以及道岔故障诊断准确率较低的问题,提出一种格拉姆角差场(Gramian Angular Difference Fields, GADF)与二维卷积神经网络(Two Dimensional Convolutional Neural Network, 2D CNN)-改进支持向量机(Support Vec... 针对道岔故障特征不易提取以及道岔故障诊断准确率较低的问题,提出一种格拉姆角差场(Gramian Angular Difference Fields, GADF)与二维卷积神经网络(Two Dimensional Convolutional Neural Network, 2D CNN)-改进支持向量机(Support Vector Machine, SVM)的道岔故障诊断组合方法。首先,结合现场实际应用情况,选取道岔设备正常转换与典型故障的转辙机功率曲线,建立转辙机功率曲线样本数据库;采用GADF编码将一维转辙机功率曲线信号转换为具有时间相关性的二维特征图,分别选择16×16、32×32以及64×64大小的特征图并提取图像数据。其次,在LeNet-5模型的基础上设计2D CNN网络结构,并将图像数据输入至基于2D CNN的道岔故障特征提取模型中,经多层的卷积层、池化层以及全连接层提取特征指标,建立道岔故障诊断样本数据库。最后,通过北方苍鹰优化(Northern Goshawk Optimization, NGO)算法优化SVM算法的惩罚因子与核函数方差,构建基于NGO-SVM的道岔故障诊断模型。实验结果分析表明,将转辙机功率曲线数据经GADF编码为64×64大小的特征图,并通过2D CNN模型提取道岔典型特征数据,较其他数据处理方法具有较高的故障诊断准确率,同时提高了故障诊断实时性;将建立的道岔故障诊断样本数据库输入至NGO-SVM道岔故障诊断模型,其故障诊断准确率高达97.5%,较其他故障诊断模型具有更好的故障诊断性能,为道岔故障诊断提供了一种新方法,对现场道岔设备的日常维修具有一定的指导意义。 展开更多
关键词 道岔设备 故障诊断 GADF 2D CNN NGO-SVM
在线阅读 下载PDF
STFT结合2D CNN-SVM的齿轮箱故障诊断方法 被引量:17
3
作者 谢锋云 汪淦 +3 位作者 王玲岚 李刚 朱海燕 谢三毛 《噪声与振动控制》 CSCD 北大核心 2024年第4期103-109,共7页
为提高齿轮箱故障诊断的有效性和故障识别的准确率,提出一种基于短时傅里叶变换(Short-term Fourier transform,STFT)、二维卷积神经网络(Two-dimensional Convolutional Neural Network,2D CNN)和支持向量机(Support Vector Machine,S... 为提高齿轮箱故障诊断的有效性和故障识别的准确率,提出一种基于短时傅里叶变换(Short-term Fourier transform,STFT)、二维卷积神经网络(Two-dimensional Convolutional Neural Network,2D CNN)和支持向量机(Support Vector Machine,SVM)相结合的齿轮箱故障识别方法。搭建JZQ250型定轴齿轮箱实验平台,利用加速度传感器获得齿轮箱振动信号,并对振动信号进行短时傅里叶变换得到二维时频图,然后将时频图输入到2D CNN中进行特征信息提取,通过2D CNN前向传播和反向传播对不同类别故障时频图信息进行训练,建立不同类别特征之间更深层次的联系,通过训练集和验证集loss曲线、准确率曲线和t-SNE可视化(t-Distributed Stochastic Neighbor Embedding,t-SNE)多种方法来反映模型训练程度,最后由SVM对故障类型进行识别。通过将所提出的方法与FFT-2D CNN、1D CNN-SVM和2D CNN-SVM对齿轮箱故障识别结果进行对比,本方法故障识别准确率最高,达到97.94%,且提出的方法具有很好的鲁棒性。 展开更多
关键词 故障诊断 齿轮箱 短时傅里叶变换 二维卷积神经网络 支持向量机
在线阅读 下载PDF
基于2D CNN和Transformer的人体动作识别 被引量:17
4
作者 朱相华 智敏 殷雁君 《电子测量技术》 北大核心 2022年第15期123-129,共7页
人体动作识别是计算机视觉领域的研究热点之一,在人机交互、视频监控等方面具有深远的理论研究意义。为了解决2D CNN无法有效获取时间关系等问题,利用Transformer在建模长期依赖关系上的优势,引入Transformer架构并将其与2D CNN相结合... 人体动作识别是计算机视觉领域的研究热点之一,在人机交互、视频监控等方面具有深远的理论研究意义。为了解决2D CNN无法有效获取时间关系等问题,利用Transformer在建模长期依赖关系上的优势,引入Transformer架构并将其与2D CNN相结合用于人体动作识别,以更好地捕获上下文时间信息。首先使用融合通道-空间注意力模块的2D CNN提取强化的帧内空间特征,其次利用Transformer捕捉帧间的时间特征,最后应用MLP Head进行动作分类。实验结果表明在HMDB-51数据集和UCF-101数据集上分别达到了69.4%和95.5%的识别准确度。 展开更多
关键词 人体动作识别 2D CNN 通道-空间注意力模块 TRANSFORMER
在线阅读 下载PDF
基于卷积注意力机制的2D-LiDAR实时人体检测算法
5
作者 刘鹏华 郑宝志 +1 位作者 姚瀚晨 戴厚德 《传感器与微系统》 CSCD 北大核心 2024年第2期153-156,164,共5页
针对激光雷达(LiDAR)数据稀疏且信息含量低,难以识别人体特征的难题,提出一种基于卷积注意力机制的人体腿部实时检测方法。通过深度引导的滑动窗口对激光点信息预处理,使对象在不同的距离上有相同的特征信息。通过时间信息聚合,获得LiDA... 针对激光雷达(LiDAR)数据稀疏且信息含量低,难以识别人体特征的难题,提出一种基于卷积注意力机制的人体腿部实时检测方法。通过深度引导的滑动窗口对激光点信息预处理,使对象在不同的距离上有相同的特征信息。通过时间信息聚合,获得LiDAR数据更丰富的空间表现,减少运算时间。通过卷积注意力模块与自回归模型卷积神经网络,对空间邻域关联错位的特征进行分析。为验证本文提出算法对行人腿部的检测效果,在DROW验证集的3种评估半径下,曲线下面积(AUC)提高21%以上,F1提高14%以上,检测时间平均降低13 ms。实验结果表明:本文算法相比于DROW算法具有更高的检测精度与更快的运算速度。 展开更多
关键词 一维卷积神经网络 注意力机制 二维激光雷达 人体腿部识别
在线阅读 下载PDF
基于CNN和Transformer双流融合的人体姿态估计
6
作者 李鑫 张丹 +2 位作者 郭新 汪松 陈恩庆 《计算机工程与应用》 北大核心 2025年第5期187-199,共13页
卷积神经网络(CNN)和Transformer模型在人体姿态估计中有着广泛应用,然而Transformer更注重捕获图像的全局特征,忽视了局部特征对于人体姿态细节的重要性,而CNN则缺乏Transformer的全局建模能力。为了充分利用CNN处理局部信息和Transfor... 卷积神经网络(CNN)和Transformer模型在人体姿态估计中有着广泛应用,然而Transformer更注重捕获图像的全局特征,忽视了局部特征对于人体姿态细节的重要性,而CNN则缺乏Transformer的全局建模能力。为了充分利用CNN处理局部信息和Transformer处理全局信息的优势,构建一种CNN-Transformer双流的并行网络架构来聚合丰富的特征信息。由于传统Transformer的输入需要将图片展平为多个patch,不利于提取对位置敏感的人体结构信息,因此将其多头注意力结构进行改进,使模型输入能够保持原始2D特征图的结构;同时提出特征耦合模块融合两个分支不同分辨率下的特征,最大限度地保留局部特征与全局特征;最后引入改进后的坐标注意力模块(coordinate attention),进一步提升网络的特征提取能力。在COCO和MPII数据集上的实验结果表明所提模型相对目前主流模型具有更高的检测精度,从而说明所提模型能够充分捕获并融合人体姿态中的局部和全局特征。 展开更多
关键词 卷积神经网络 TRANSFORMER 局部特征 全局特征 2D特征图 特征耦合
在线阅读 下载PDF
基于二维卷积神经网络的城市暴雨内涝积水模拟预报研究 被引量:1
7
作者 柴永丰 陈敏 +4 位作者 郝彦龙 肖家清 邓蔚珂 吕凯 师鹏飞 《水文》 北大核心 2025年第3期17-24,共8页
城市内涝灾害频发,开展精准高效的预报、预警和预演对于城市内涝防控和防洪排涝规划具有重要意义。基于水动力学模型的城市雨洪模拟面临计算效率低、建模资料需求大等问题,难以支撑“四预”实现。本研究以扬州新城河片区为研究区,建立... 城市内涝灾害频发,开展精准高效的预报、预警和预演对于城市内涝防控和防洪排涝规划具有重要意义。基于水动力学模型的城市雨洪模拟面临计算效率低、建模资料需求大等问题,难以支撑“四预”实现。本研究以扬州新城河片区为研究区,建立时空数据(降雨和地形)驱动的基于二维卷积神经网络的城市内涝积水预测模型,实现研究区全域网格的逐时段模拟。结果表明,模型对积水时空预测性能表现优异,卡帕系数等空间性能指标高于0.80,且半数指标高于0.95,大部分积水点积水深时间序列纳什效率系数为0.80~0.99。相较物理过程模型,训练(率定)和预测效率分别提升77.7倍、285.2倍。研究成果可为城市内涝实时预报、即时预警、快速推演提供技术参考。 展开更多
关键词 城市内涝模拟 二维卷积神经网络(2DCNN) 机器学习 时空特征 快速预报
在线阅读 下载PDF
基于改进CNN-GRU模型的滚动轴承多故障诊断模型
8
作者 张雄 渠伟瀅 +2 位作者 王文强 董乐聪 万书亭 《机电工程》 北大核心 2025年第10期1931-1939,共9页
针对多种工况和故障共存引起的滚动轴承故障,采用传统的基于卷积神经网络的故障诊断模型进行诊断时,存在提取特征不丰富、容易丢失故障敏感信息、计算复杂和准确性低的问题,为此,提出了一种二维卷积神经网络(2D-CNN)与门控循环单元(GRU... 针对多种工况和故障共存引起的滚动轴承故障,采用传统的基于卷积神经网络的故障诊断模型进行诊断时,存在提取特征不丰富、容易丢失故障敏感信息、计算复杂和准确性低的问题,为此,提出了一种二维卷积神经网络(2D-CNN)与门控循环单元(GRU)相结合的滚动轴承多故障诊断模型(2D-CNN-GRU),并采用XJTU-SY和QPZZ-II两个公开轴承数据集,对其有效性进行了验证。首先,采用2D-CNN作为空间特征提取器,获取了信号的多种局部和全局特征,并将GRU层作为信号时序信息特征提取器;然后,对模型的特征提取过程进行了可视化处理;最后,将所选择的有效信号输入2D-CNN-GRU模型中,完成了数据分类,进而完成了轴承故障诊断。研究结果表明:利用XJTU-SY实验数据和QPZZ-II实验数据,验证了该方法在多种工作条件下对多种轴承故障共存的情况具有优秀的分类效果,准确率达到了95%以上。与传统轴承故障诊断方法相比,2D-CNN-GRU模型具有更高的准确性和一定的实际应用价值。 展开更多
关键词 滚动轴承 多故障诊断 二维卷积神经网络 门控循环单元 特征提取 数据预处理
在线阅读 下载PDF
基于改进型多维卷积神经网络的微动手势识别方法 被引量:7
9
作者 李玲霞 王羽 +1 位作者 吴金君 王沙沙 《计算机工程》 CAS CSCD 北大核心 2018年第9期243-249,共7页
传统二维卷积神经网络因遗漏时间维度信息导致不能识别微动手势。为此,提出一种基于视频流的微动手势识别方法。对输入视频流进行简单预处理,利用改进型多维卷积神经网络提取手势的时空特征,融合多传感器信息并通过支持向量机实现微动... 传统二维卷积神经网络因遗漏时间维度信息导致不能识别微动手势。为此,提出一种基于视频流的微动手势识别方法。对输入视频流进行简单预处理,利用改进型多维卷积神经网络提取手势的时空特征,融合多传感器信息并通过支持向量机实现微动手势识别。实验结果表明,该方法对手势的背景和光照都具有较好的鲁棒性,且针对各类动态手势数据集能达到87%以上的识别准确率。 展开更多
关键词 计算机视觉 手势识别 二维卷积神经网络 多维卷积神经网络 支持向量机 鲁棒性
在线阅读 下载PDF
基于深度学习的人体动作识别综述 被引量:38
10
作者 钱慧芳 易剑平 付云虎 《计算机科学与探索》 CSCD 北大核心 2021年第3期438-455,共18页
人体动作识别是视频理解领域的重要课题之一,在视频监控、人机交互、运动分析、视频信息检索等方面有着广泛的应用。根据骨干网络的特点,从2D卷积神经网络、3D卷积神经网络、时空分解网络三个角度介绍了动作识别领域的最新研究成果,并... 人体动作识别是视频理解领域的重要课题之一,在视频监控、人机交互、运动分析、视频信息检索等方面有着广泛的应用。根据骨干网络的特点,从2D卷积神经网络、3D卷积神经网络、时空分解网络三个角度介绍了动作识别领域的最新研究成果,并对三类方法的优缺点进行了定性的分析和比较。然后,从场景相关和时间相关两方面,全面归纳了常用的动作视频数据集,并着重探讨了不同数据集的特点及用法。随后,介绍了动作识别任务中常见的预训练策略,并着重分析了预训练技术对动作识别模型性能的影响。最后,从最新的研究动态出发,从细粒度动作识别、更精简的模型、小样本学习、无监督学习、自适应网络和视频超分辨动作识别六个角度一致探讨了动作识别未来发展的方向。 展开更多
关键词 人体动作识别 2D卷积神经网络(2D CNN) 3D卷积神经网络(3D CNN) 时空分解网络 预训练
在线阅读 下载PDF
基于深度学习的二维人体姿态估计综述 被引量:3
11
作者 王珂 陈启腾 +2 位作者 陈伟 刘珏廷 杨雨晴 《郑州大学学报(理学版)》 CAS 北大核心 2024年第4期11-20,共10页
人体姿态估计是近年来计算机视觉问题中的一个热门话题,它在改善人类生活方面具有巨大的益处和潜在的应用。近年来深度神经网络得到快速发展,相较于传统方法而言,采用深度学习的方法更能提取图像表征信息。综合分析近年来人体姿态估计... 人体姿态估计是近年来计算机视觉问题中的一个热门话题,它在改善人类生活方面具有巨大的益处和潜在的应用。近年来深度神经网络得到快速发展,相较于传统方法而言,采用深度学习的方法更能提取图像表征信息。综合分析近年来人体姿态估计的进展,根据检测人数分为单人和多人人体姿态估计。针对单人姿态估计,介绍了基于直接预测人体坐标点的坐标回归方法及基于预测人体关键点高斯分布的热图检测方法;针对多人姿态估计,采用解决多人到解决单人过程的自顶向下方法和直接处理多人关键点的自底向上方法。总结了各方法网络结构的特点和优缺点,并阐述当前面临的问题及未来发展趋势。 展开更多
关键词 深度学习 卷积神经网络(CNN) 二维人体姿态估计 关键点检测
在线阅读 下载PDF
基于胸腔信号样本的FMCW雷达身份验证 被引量:1
12
作者 漆晶 汪正东 谢广智 《雷达科学与技术》 北大核心 2023年第5期539-546,554,共9页
针对当前使用体征信号进行身份验证准确率低,且特征提取过程复杂的问题,本文在通过毫米波雷达检测生命体征的基础上,提出了一种将纯净的人体胸腔信号(Chest Cavity Signal,CCS)作为样本进行身份验证的方法。首先,对提取到的雷达原始信... 针对当前使用体征信号进行身份验证准确率低,且特征提取过程复杂的问题,本文在通过毫米波雷达检测生命体征的基础上,提出了一种将纯净的人体胸腔信号(Chest Cavity Signal,CCS)作为样本进行身份验证的方法。首先,对提取到的雷达原始信号进行预处理,消除与实验无关的冗余干扰并提取相位信号。接着对含有干扰的相位信号进行变分模态分解(VMD),提取纯净的心跳与呼吸信号并制作CCS样本。最后将CCS样本送入二维卷积神经网络(2D CNN)中进行训练并验证身份,识别准确率达到了97.5%,实验证明本文提出的方法对于身份验证具有很好的效果。 展开更多
关键词 毫米波雷达 身份验证 变分模态分解 二维卷积神经网络 胸腔信号
在线阅读 下载PDF
基于多维神经网络深度特征融合的鸟鸣识别算法 被引量:2
13
作者 吉训生 江昆 谢捷 《信号处理》 CSCD 北大核心 2022年第4期844-853,共10页
为了进一步提高夜间迁徙鸟鸣监测的准确率,提出一种基于多维神经网络深度特征融合的鸟鸣识别算法。首先,提取鸟鸣对数尺度的梅尔谱图作为VGG Style模型的训练特征,增强时频谱图的能量分布,通过Mix up数据混合生成虚拟数据以减少模型的... 为了进一步提高夜间迁徙鸟鸣监测的准确率,提出一种基于多维神经网络深度特征融合的鸟鸣识别算法。首先,提取鸟鸣对数尺度的梅尔谱图作为VGG Style模型的训练特征,增强时频谱图的能量分布,通过Mix up数据混合生成虚拟数据以减少模型的过拟合。之后,将预训练的VGG Style作为特征提取器对每一段鸟鸣提取深度特征。鉴于不同维度模型的互补性,该文提出分别使用1维CNN-LSTM、2维VGG Style与3维DenseNet121模型作为特征提取器生成高级特征。对于1维CNN-LSTM,使用小波分解作为池化方法,分别对鸟鸣时、频域进行9层小波分解,生成多层LBP特征以获取更丰富的时频信息。最后,对CNN-LSTM与DenseNet121的全连接层进行优化,减少模型参数,提高实时性。实验结果表明,通过融合多维神经网络的深度特征,使用浅层分类器在含有43种鸟类的CLO-43SD数据集中,获得了93.89%的平衡准确率,相较于最新的Mel-VGG与Subnet-CNN融合模型,平衡准确率提高了7.58%。 展开更多
关键词 鸟鸣识别 1维CNN-LSTM 2维VGG Style 3维DenseNet121 深度特征融合
在线阅读 下载PDF
基于Mask R-CNN的复杂背景下柑橘树枝干识别与重建 被引量:28
14
作者 杨长辉 王卓 +3 位作者 熊龙烨 刘艳平 康曦龙 赵万华 《农业机械学报》 EI CAS CSCD 北大核心 2019年第8期22-30,69,共10页
为了获取自然环境下完整柑橘果树枝干信息,以引导采摘机器人进行避障采摘作业,提出了一种基于Mask R-CNN模型与多参数变量约束的柑橘果树枝干识别与重建方法。该方法采用网格化的标记方式对果树枝干进行标记,完成了对柑橘果树枝干的小... 为了获取自然环境下完整柑橘果树枝干信息,以引导采摘机器人进行避障采摘作业,提出了一种基于Mask R-CNN模型与多参数变量约束的柑橘果树枝干识别与重建方法。该方法采用网格化的标记方式对果树枝干进行标记,完成了对柑橘果树枝干的小区域识别;然后对该模型获得的离散mask进行最小外接矩处理,以获得更精确的目标区域;接着利用多参数变量约束完成同一枝干mask(掩码)的划分;最后为了使重建枝干更符合实际枝干的生长姿态,以及完善未识别区域的检测,对同一枝干mask中心点进行了四次多项式拟合。实验结果表明,模型在测试集下的平均识别精确率为98.15%,平均召回率为81.09%,果树单条枝干平均拟合误差为11.47%,果树枝干整体平均重建准确率为88.64%。 展开更多
关键词 柑橘 采摘机器人 MASK R-CNN 识别 二维重建
在线阅读 下载PDF
基于二维图像和CNN-BiGRU网络的滚动轴承故障模式识别 被引量:34
15
作者 张训杰 张敏 李贤均 《振动与冲击》 EI CSCD 北大核心 2021年第23期194-201,207,共9页
为确保对滚动轴承故障诊断的有效性,结合卷积神经网络(CNN)在图像特征提取与分类识别的优势,利用格拉姆角场(GAF)将滚动轴承一维振动信号转换为二维图像数据,既保留了信号完整的信息,也保持着信号对于时间的依赖性。并由此提出基于卷积... 为确保对滚动轴承故障诊断的有效性,结合卷积神经网络(CNN)在图像特征提取与分类识别的优势,利用格拉姆角场(GAF)将滚动轴承一维振动信号转换为二维图像数据,既保留了信号完整的信息,也保持着信号对于时间的依赖性。并由此提出基于卷积神经网络与双向门控循环单元(BiGRU)的诊断模型。首先将二维图像作为模型的输入数据,通过卷积神经网络提取图像的空间特征,再由双向门控循环单元筛选其时间特征,最终由分类器完成模式识别。通过对滚动轴承不同故障程度以及不同故障位置的诊断试验,准确率分别达到99.63%以及99.28%,其效果均优于其他常用算法,证明了所提方法的可行性。 展开更多
关键词 滚动轴承 故障诊断 格拉姆角场(GAF) 二维图像 卷积神经网络(CNN) 双向门控循环单元(BiGRU)
在线阅读 下载PDF
倾斜式投影作为前端和模型库分类作为后端的三维模型识别方法 被引量:1
16
作者 罗文劼 张涵 +1 位作者 倪鹏 田学东 《计算机应用与软件》 北大核心 2021年第9期193-198,共6页
对于模型到模型(shape-to-shape)的识别,已有的多视图方法由于存在信息缺失问题,使得其作为2D卷积神经网络的前端会导致错误的学习,并且使用SVM作为后端会保留这些错误信息,从而增大分类工作的困难。通过改进多视图的投影方法和三维模... 对于模型到模型(shape-to-shape)的识别,已有的多视图方法由于存在信息缺失问题,使得其作为2D卷积神经网络的前端会导致错误的学习,并且使用SVM作为后端会保留这些错误信息,从而增大分类工作的困难。通过改进多视图的投影方法和三维模型分类的方法提高分类精度和效率。使用倾斜式的角度可以最大程度捕捉信息,增大模型与模型之间的特征差异,而模型库分类方法通过建立一个模型库,去除前端学习的错误信息。倾斜式多视图投影法较当今优秀方法分类精度提升0.4%~1.3%,模型库分类法较SVM提升0.5%~1.5%。该方法ModelNet40数据集的最高分类精度达到了96.9%,在ModelNet10数据集上最高为98.5%,分类所需时间较SVM减少50%~66%。 展开更多
关键词 模型库分类 倾斜式投影 2D卷积神经网络 模型到模型识别
在线阅读 下载PDF
基于CNN和融合目标的三通道小波滤波器组识别 被引量:1
17
作者 刘斌 李昕 《计算机应用与软件》 北大核心 2024年第2期209-215,285,共8页
为解决目前需要人工选取二维不可分小波滤波器实现图像融合的问题,提出一种基于CNN和融合图像清晰度的二维三通道不可分对称小波的滤波器组自动择优分类方法。构造大量分布均匀的3×5对称小波滤波器组,并用其对多聚焦图像进行融合,... 为解决目前需要人工选取二维不可分小波滤波器实现图像融合的问题,提出一种基于CNN和融合图像清晰度的二维三通道不可分对称小波的滤波器组自动择优分类方法。构造大量分布均匀的3×5对称小波滤波器组,并用其对多聚焦图像进行融合,根据融合结果对滤波器组设置融合清晰度高低的标签,并构造滤波器组的训练集和测试集;设计出分类的卷积神经网络,并进行训练得到模型;对训练集和测试集以外的滤波器样本进行识别与结果分析。实验结果表明:所设计的网络模型在测试集和测试集以外的数据集上的识别率分别为99.48%和99.58%,其分类结果中较好的滤波器类对多聚焦图像融合都有较高的清晰度。 展开更多
关键词 多聚焦图像融合 二维三通道不可分小波 CNN 滤波器组 清晰度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部